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ABSTRACT
In communication systems, clean speech is often reproduced
by loudspeakers and disturbed by local acoustical noise. Near-
end listening enhancement (NELE) is a technique to enhance
the speech intelligibility in environmental noise by adaptively
preprocessing the speech based on a noise estimate. Con-
ventional NELE-algorithms adaptively filter the speech by
applying spectral gains which are determined by maximizing
intelligibility measures. Usually, this leads to speech amplifi-
cations at highly disturbed frequencies to overcome masking.
In this paper, a new approach is presented which shapes the
speech spectrum according to the inverse of the noise power
spectrum. It is based on a simple gain rule. Its advantages are
a predictable spectral behavior and a fixed computational com-
plexity, since no optimization problem with an unknown num-
ber of iterations needs to be solved. Simulations have shown
that it copes with a wide range of noise types and provides a
similar performance compared to conventional algorithms.

1. INTRODUCTION
The objective of near-end listening enhancement (NELE) is
to improve speech intelligibility of communication systems
in noisy environments, for example for mobile telephony [1],
hands-free communication in cars [2] and public announce-
ment systems [3]. Known contributions optimize an approx-
imation of the Speech Intelligibility Index (SII) [4] by redis-
tributing the speech spectral power based on the estimated
power spectrum of the noise [5–8]. Zorila et al. [9] and
Schepker et al. [10] make use of a dynamic range compres-
sor; [10] additionally distributes speech power uniformly over
frequency, controlled by an estimated SII-measure.

Typical objective measures for the evaluation of speech
enhancement are the SII [4] and the Speech Transmission Index
(STI) [11]. The SII is an energy-based measure which predicts
intelligibility of speech in noise by taking masking effects into
account. The STI is a measure for intelligibility, too, which
additionally considers speech distortions and the frequency
response of an enhancement system.

In this paper, a new approach is proposed which distributes
the speech power proportionally to the inverse noise spectrum.
This approach is realized as a simple, low complexity gain rule
by applying spectral gains in critical subbands.

2. COMPARISON TO LITERATURE

In this section, the SII-based optimization algorithms OptSII-
recurDist by Sauert [8] and the proposal of Taal [7] are ana-
lyzed and compared to the proposed approach at a sampling
rate of fs = 16 kHz. In general, SII-based algorithms consider
an approximate SII measure to obtain a convex optimization
problem. Both considered algorithms work in a subband do-
main as specified in the SII-standard. At medium signal-to-
noise ratios (SNR), Sauert [8] as well as Taal [7] shape the
speech power spectrum according to the noise spectral power,
i.e., speech power is redistributed over frequency such that
the speech overcomes masking by noise in each subbband. In
extreme low SNR cases Sauert shapes the speech power spec-
trum according to the Band Importance Function from [4], e.g.,
it concentrates the power principally in the range 450-4000 Hz.
Taal’s optimization acts similar, but in contrast to Sauert it
selectively eliminates highly disturbed frequency bands and re-
distributes the saved power to subbands in which it contributes
to an increased intelligibility. In high SNR conditions, Sauert
does not modify the speech, whereas Taal still redistributes
speech power over frequency. Both algorithms support the
constraint not to increase the total audio power. Sauert addi-
tionally provides a mode in which a maximum amplification
or a maximum absolute sound pressure level is specified.

The two above mentioned algorithms filter the speech by
applying spectral gains in a critical subband domain, which
are obtained by solving an optimization problem. The result-
ing closed-form expressions are processed iteratively until an
optimal solution is found. The number of iterations as well
as the weighting behaviour of the algorithm are not known
a-priori. In contrast, the proposed algorithm filters the speech
by applying spectral gains which do not depend on an opti-
mization problem, but on a simple gain rule. Therefore, the
algorithm is well predictable in terms of run time and spectral
behaviour. Moreover, its computational complexity is very
low. It supports the constraint of equal input and output speech
power, which allows fair comparisons between algorithms and
is applicable for example in mobile phones and hands-free
communication systems.

The basic idea of this proposal is to attenuate the speech
in frequency bands with high disturbance, where it barely
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Fig. 1: Overview of the system framework.

contributes to the intelligibility, and to redistribute the power
into less-disturbed subbands. In contrast to Sauert and Taal,
regarding low SNR conditions, the speech spectrum is shaped
according to the inverse of the noise power spectrum. In
high SNR cases the speech passes the enhancement system
without being filtered to maintain the original tone color. In
medium SNR ranges it would be beneficial to shape the speech
spectrum according to the noise power spectrum as in [8].
However, it turned out that the intelligibility is not significantly
impaired if the same processing as in the low SNR case is
performed. Therefore, we interpolate between the inverse
noise shape and the original speech shape to account for the
range between highly disturbed and undisturbed environments.
The interpolation is controlled by a simplified SII-measure.

3. FRAMEWORK

An overview of the framework is given in Fig. 1. The input
signals are the clean speech from the far-end s(k) and the near-
end microphone signal x(k), composed of near-end noise and
potentially speech. The enhanced output speech signal senh(k)
will be acoustically reproduced by the near-end loudspeaker.

At first s(k) is segmented into overlapping frames (index
λ, frame length MF , frame advance Madv), windowed by
a time-domain window function w(k) and transferred to the
frequency domain (frequency index µ) by means of a discrete
Fourier transform (DFT) of length MF :

S(λ, µ) =

MF−1∑
k=0

s (k+(λ−1)Madv) ·w(k) · e−j2π
µk
MF . (1)

x(k) is transformed to the frequency domain X(λ, µ) analo-
gously. An estimation of the near-end noise power spectrum
|N̂ |2 is obtained fromX using the Speech Presence Probability
(SPP) algorithm [12].

Next, the frequency domain signals are transformed to
MSB = 21 critical subbands (index i) by combining several
frequency bins. To achieve this, frequency domain windows
Wi(µ) are designed with an overall flat frequency charac-
teristic and a linear slope in the transition between adjacent
windows. The windows are designed according to [4, Table 1],
where the center, low and high frequencies fc,i, fl,i and fh,i

are defined for each band. The bandwidths can be deduced
from the window according to:

∆fi =
fs

MF
·
MF∑
µ=0

Wi(µ), i = 1, ...,MSB. (2)

According to [4] the subband powers are normalized to ∆fi.
For complexity reasons, this step is included into the frequency
window:

W ′i (µ) = Wi(µ) · 1

∆fi

=
Wi(µ)∑MF

ζ=0Wi(ζ)
· MF

fs
.

(3)

Under these preconditions the frequency-normalized subband
powers for far-end speech and near-end noise are calculated:

φS(λ, i)=
1

cw
·
MF∑
µ=0

|S(λ, µ)|2 ·W ′i (µ), i=1, ...,MSB, (4)

φN (λ, i)=
1

cw
·
MF∑
µ=0

|N̂(λ, µ)|2 ·W ′i (µ), i=1, ...,MSB, (5)

For an unbiased power estimator, the influence of the time-
domain window w(k) on power levels is compensated using a
constant cw:

cw =
1

MF
·
MF−1∑
k=0

w2(k). (6)

To avoid fast changing weighting gains, the speech subband
powers are recursively smoothed over time using a smoothing
constant β. A binary Voice Activity Detector (VAD) v(λ) ∈
{0, 1} is implemented according to [13] to ensure that only
far-end frames with voice activity will be considered.

ΦS(λ, i)=

{
(1−β) · φS(λ, i) + β · ΦS(λ−1, i), v(λ)=1

ΦS(λ−1, i), v(λ)=0.

(7)
The noise powers are smoothed accordingly:

ΦN (λ, i) = (1−β) · φN (λ, i) + β · ΦN (λ−1, µ). (8)

In the following, only smoothed power estimates will be used.
To account for masking effects, a disturbance power ΦD is
calculated as in [4, 8] under the assumption that self-speech
masking and internal noise floors can be neglected. The calcu-
lation rule respects inter-band masking from lower to higher
bands:

ΦD(λ, i) = ΦN (λ, i) +
i−1∑
ζ=1

ΦN (λ, ζ) · Cζ(λ)
log2

fc,i
fh,ζ , (9)
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with a slope per octave of

Ci(λ) = 10−8 · (ΦN (λ, i) ·∆fi)0.6. (10)

Based on the power estimates ΦS and ΦD, the gain rule in
Sec. 4 determines weighting gains G(λ, i) for each frequency
band. They are expanded to the high-resolution frequency
domain,

Ghr(λ, µ) =

MSB∑
i=1

G(λ, i) ·Wi(µ), (11)

multiplied to the speech, Senh(λ, µ) = S(λ, µ) · Ghr(λ, µ),
and transformed to the time-domain senh(k) by means of In-
verse Fast Fourier Transform (IFFT) and overlap-add.

4. NEW GAIN RULE

In this section, the new rule for the gain G(λ, i) is developed.
For reasons of simplicity, λ and i are omitted if possible.

In low disturbance cases, speech is well understandable
without listening enhancement and should not be influenced
by the system. The processed speech power spectrum G2 ·ΦS
will equal the original speech power spectrum:

G2 · ΦS = ΦS , (12)

with unity gains. In high disturbance cases, the speech power
spectrum is shaped proportionally to the inverse of the distur-
bance power:

G2 · ΦS ∼
1

ΦD
. (13)

To avoid excessive amplifications in frequency bands with rela-
tively low disturbance power, the disturbance power spectrum
is modified by applying a minimum threshold:

Φ′D(λ, i) = max

(
ΦD(λ, i),

γ

MSB
·
MSB∑
i=1

ΦD(λ, i)

)
. (14)

The threshold is chosen to be a fraction of the average distur-
bance subband power with 0 < γ < 1. Based on this, the
processed speech power spectrum in the high disturbance case
is set to

G2 · ΦS = c · 1

Φ′D
. (15)

The variable c will be chosen later such that the total speech
power remains unchanged. To cover also intermediate scenar-
ios between undisturbed environments and high disturbances,
an interpolation between Eq. 12 and 15 is performed in the
logarithmic amplitude domain:

G2 · ΦS = c ·
(

1

Φ′D

)α
· (ΦS)

1−α
, (16)

using a control parameter α ∈ [0, 1]. Finally, the constant c
ensures that the total input and output speech power are equal:

MSB∑
i=1

G2 · ΦS ·∆f =

MSB∑
i=1

ΦS ·∆f. (17)

⇔ c =

∑MSB

i=1 ΦS ·∆fi∑MSB

i=1 (Φ′D)
−α · (ΦS)

1−α ·∆fi
(18)

4.1. Choice of the control parameter
The control parameter α(λ) regulates the aggressiveness of
the enhancement system. For α = 0 the speech remains
unprocessed. For α = 0.5 the resulting speech spectrum is
the geometric mean of the original speech spectrum and the
inverse disturbance spectrum, i.e., the speech is partly adapted
to the noise. It is not recommended to completely adapt the
speech to the noise (α = 1) since the original spectral envelope
would be lost and the speech would sound unnatural. Informal
tests have shown that α should be limited to [0, αmax] with
αmax = 0.5.

The influence of α on objective measures is visualized in
Fig. 2. In low SNR conditions, the best intelligibilities in terms
of STI are achieved by choosing high interpolation values. In
contrast, low values of α maximize the STI in high SNR cases.

The interpolation parameter is controlled by a measure of
current intelligibility. At low intelligibilities high values of α
are chosen and vice versa. We use a simplified short-time SII

Î(λ)=

MSB∑
i=1

Ai ·max

0,min

1, 10 lg ΦS(λ,i)
ΦD(λ,i) +15 dB

30 dB


(19)

which is a mean of the subband intelligibilities, weighted
by the Band Importance Function Ai [4]. Ai allocates less
importance to subbands with center frequencies below 450 Hz
or above 4000 Hz. This implicitly accounts for the fact that
the impairment of speech intelligibility by noise depends not
only on the SNR, but also on the noise type. SII thresholds
for good and bad intelligibilities are Ihigh = 0.85 and Ilow =

0.45, respectively. α is chosen with a linear dependency to Î
such that the full enhancement is achieved below Ilow and no
filtering is performed above Ihigh:

α(λ) = αmax ·max

[
0,min

[
1,
Ihigh − Î(λ)

Ihigh − Ilow

]]
. (20)

The dashed curve in Fig. 2 affirms that Eq. 20 leads to a
reasonable choice of α in terms of STI.

5. EVALUATION

In this section, the performance of the new algorithm is evalu-
ated and compared to state-of-the-art algorithms by means
of simulations, using the parameters in Table 1. For the
simulation, speech files are taken randomly from the TIMIT
database [14] and normalized to 62.35 dB SPL as in [4]. Five
different noise types (cf. Table 2) are used as environmental
noise. The noise level is adjusted in steps such that the overall
SNR at the listener is between -30 dB and 30 dB. The proposed
algorithm is compared to the published Matlab implementation
of Taal [7] and OptSIIrecurDist by Sauert [8]. The first two
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Fig. 2: STI as a function of SNR for different choices of α.

Parameter Settings

Sampling frequency fs 16 kHz
FFT length MF 512 (with zero padding)
Frame length M 320 =̂ 20 ms
Frame advance Madv 160 =̂ 10 ms

Time-domain window w(k)
√

Hann
Number subbands MSB 21
Smoothing parameter β 0.9802 =̂ 1 s
Disturbance limitation γ 0.1

Table 1: Simulation settings.

seconds of each processed speech file are not considered for
the evaluation in order to remove possible transient effects. In
total 225 s of speech are evaluated per noise type, SNR setting
and algorithm. Despite the constraint of not increasing the
speech power, the algorithms might produce slight deviations
in the output power due to slight inaccuracies in the estimation
of the input speech power. For the fairness of comparison we
normalize the enhanced speech to the same power a-posteriori.

Two special noise types are discussed first to clarify the
behavior of the gain rule: White noise and bandpass noise.
The proposed algorithm is based on a weighted geometric
average of the original speech spectrum and the inverse noise
(Eq. 16). In the case of bandpass noise, speech power from
the disturbed frequency range is redistributed to undisturbed
frequency parts. In the presence of white noise, the speech
power spectrum becomes flat. Since speech usually exhibits a
decreasing spectral slope to high frequencies, this corresponds
to a highpass which is known to increase intelligibility [15].

Table 2 shows the results of the enhancement algorithms
for different noise types. With regard to white, babble, in-car
(Volvo) and traffic noise, the proposal enhances the intelligi-
bility significantly compared to the unprocessed case and is
competitive with Sauert and Taal. Only for bandpass noise, the
STI decreases, but the SII and informal listening tests point
out improvements.

Figures 3 and 4 visualize the performance of the algo-
rithms as a function of SNR, averaged over the noise types
from Table 2. We do not expect significant SII-improvements
compared to Sauert and Taal, who employ the SII as optimiza-

SII | STI

Noise Type SNR Unproc. Proposed Sauert Taal

White [16] 0 dB 0.36 | 0.35 0.45 | 0.38 0.46 | 0.39 0.46 | 0.38
Babble [16] 0 dB 0.39 | 0.47 0.51 | 0.50 0.51 | 0.53 0.51 | 0.52
Volvo [16] -10 dB 0.37 | 0.43 0.48 | 0.48 0.49 | 0.50 0.50 | 0.49
Traffic [17] 0 dB 0.29 | 0.34 0.40 | 0.41 0.41 | 0.42 0.42 | 0.43
Bandpass -10 dB 0.64 | 0.64 0.67 | 0.59 0.64 | 0.64 0.69 | 0.41

Table 2: Instrumental Measures SII and STI as a function of the noise
type and the algorithm. Frequency range of bandpass (BP) noise:
800-1100 Hz.
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Fig. 3: Comparison of NELE algorithms in terms of SII.

tion criterion. However, in the relevant SNR range between
-10 dB and 5 dB the proposed algorithm performs similarly
well as Taal and Sauert and achieves a significant improve-
ment in comparison to the unprocessed case. In high SNR
conditions (> 10 dB) the results are inferior to conventional
algorithms, but there is no need for intelligibility improve-
ment due to the fact that speech is already well understandable
in these conditions. In very bad situations (SNR < −5 dB)
speech is hardly understandable, even with NELE. In terms of
STI, the proposed algorithm competes with Taal and Sauert for
SNR < 10 dB. Taal’s intelligibility saturates at STI = 0.64
because the spectral gains do not converge to 1 for high SNRs
in the presented range. To sum up, the new approach produces
similar results as conventional algorithms, but the complex-
ity is significantly lower since no real-time optimization is
required.
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Fig. 4: Comparison of NELE algorithms in terms of STI.
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6. CONCLUSIONS

In this contribution, a new NELE algorithm is presented which
distributes the speech spectral power similar to the inverse
disturbance spectral power. Conventional algorithms are based
on solving a realtime optimization problem iteratively with
varying runtimes. Sauert, for example, needs an unknown
number of recursive steps to find an optimal solution in the
admissible range (usually less than 3 steps though) [8, p.59]
and also Taal’s optimization results in a recursive dependency
which must be solved by evaluating expressions with an un-
known number of different parameter values. In contrast, the
proposed algorithm calculates the spectral gains by evaluating
only one simple equation. Therefore, the computational com-
plexity is predetermined. Moreover, the new gain rule leads to
a predictable spectral behaviour. It copes with a wide range of
different noise types and provides similar evaluation results as
state-of-the-art techniques.

Although the processed speech sounds unnatural due to
a high tone color, informal listening indicates that presented
with noise, the speech modifications do not disturb the lis-
tener. Instead, they support the comprehension. The best
objective results are achieved for αmax = 0.5, but subjective
tests exhibit higher intelligibilities for a more aggressive set-
ting (αmax = 0.7). This reveals slight discrepancies between
objective measures and subjective impressions.

REFERENCES

[1] B. Sauert, F. Heese, and P. Vary, “Real-Time Near-End
Listening Enhancement for Mobile Phones,” in IEEE
International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP). May 2014, IEEE, Show and
Tell Demonstration.

[2] M. Niermann, F. Heese, and P. Vary, “Intelligibility En-
hancement For Hands-Free Mobile Communication,” in
Proceedings of German Annual Conference on Acoustics
(DAGA). 2015, pp. 384–387, DEGA.

[3] R. Hendriks, J. Crespo, J. Jensen, and C. Taal, “Speech
Reinforcement in Noisy Reverberant Conditions under
an Approximation of the Short-Time SII,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, Apr. 2015, pp. 4400–4404.

[4] ANSI S3.5-1997, Methods for the Calculation of the
Speech Intelligibility Index, ANSI, 1997.

[5] B. Sauert and P. Vary, “Near End Listening Enhance-
ment Optimized with Respect to Speech Intelligibility
Index and Audio Power Limitations,” in Proceedings
of European Signal Processing Conference (EUSIPCO).
Aug. 2010, pp. 1919–1923, EURASIP.

[6] B. Sauert and P. Vary, “Recursive Closed-Form Opti-
mization of Spectral Audio Power Allocation for Near
End Listening Enhancement,” in ITG-Fachtagung

Sprachkommunikation, Berlin, Germany, Oct. 2010,
VDE Verlag GmbH.

[7] C. H. Taal, J. Jensen, and A. Leijon, “On Optimal Linear
Filtering of Speech for Near-End Listening Enhance-
ment.,” IEEE Signal Process. Lett., vol. 20, no. 3, pp.
225–228, 2013.

[8] B. Sauert and P. Vary, Near-End Listening Enhance-
ment: Theory and Application, PhD thesis, IND, RWTH
Aachen University, Aachen, May 2014.

[9] T. Zorila, V. Kandia, and Y. Stylianou, “Speech-In-Noise
Intelligibility Improvement based on Power Recovery
and Dynamic Range Compression,” in Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th
European, Aug. 2012, pp. 2075–2079.

[10] H. F. Schepker, J. Rennies, and S. Doclo, “Improving
speech intelligibility in noise by SII-dependent prepro-
cessing using frequency-dependent amplification and
dynamic range compression.,” in INTERSPEECH, 2013,
pp. 3577–3581.

[11] R. L. Goldsworthy and J. E. Greenberg, “Analysis of
Speech-Based Speech Transmission Index Methods with
Implications for Nonlinear Operations,” The Journal of
the Acoustical Society of America, vol. 116, no. 6, pp.
3679–3689, 2004.

[12] T. Gerkmann and R. C. Hendriks, “Noise Power Es-
timation based on the Probability of Speech Presence,”
in IEEE Workshop on Applications of Signal Process-
ing to Audio and Acoustics (WASPAA), 2011. 2011, pp.
145–148, IEEE.

[13] ITU-T Recommendation G.729, Coding of speech at 8
kbit/s using conjugate-structure algebraic-code-excited
linear prediction (CS-ACELP), ITU, 2007.

[14] J. S. Garofolo and L. D. Consortium, TIMIT: acoustic-
phonetic continuous speech corpus, Linguistic Data
Consortium, 1993.

[15] R. J. Niederjohn and J. H. Grotelueschen, “The En-
hancement of Speech Intelligibility in High Noise Levels
by High-Pass Filtering Followed by Rapid Amplitude
Compression,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 24, no. 4, pp. 277–282, 1976.

[16] A. Varga and H. J. Steeneken, “Assessment for Auto-
matic Speech Recognition: II. NOISEX-92: A Database
and an Experiment to Study the Effect of Additive Noise
on Speech Recognition Systems,” Speech communica-
tion, vol. 12, no. 3, pp. 247–251, 1993.

[17] ETSI EG 202 396-1, Speech and multimedia Trans.
Quality (STQ); Speech quality performance in the pres-
ence of background noise; Part 1: Background noise
simulation techniques and background noise database,
ETSI, Mar. 2009.

2016 24th European Signal Processing Conference (EUSIPCO)

2394


