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Abstract—We present an iterative algorithm to extract the
voice source waveform from recordings of speech for speaker
identification. The method detects glottal closings, then con-
structs a speaker-dependent library of glottal pulse waveforms
by clustering data windows centered on the linear prediction
error time-series at the glottal closures. With the voice source
modeled as scaled and shifted glottal pulses, the algorithm
iteratively determines the vocal tract parameters in each frame. In
experiments, we combine the extracted voice source information
with a universal background model (UBM). Using the TIMIT
data corpus and a 200-speaker population size, we demonstrate
a factor of three speaker recognition error reduction.

I. INTRODUCTION AND PREVIOUS WORK
A. Voice source information for speaker recognition

Most recent work in speaker recognition relies on front-
end processing that extracts short-time spectral information
such as MFCCs [1]. These features were developed for speech
recognition and are not optimized to capture the speaker-
dependent voice source information. Attempts to add voice
source information back into speaker-recognition systems to
improve them have met limited success [1], [2], [3], probably
due to the difficulty of estimating the voice source waveform
itself.

The most basic principle in voice source estimation is linear
prediction [3]. The linear predictive coding (LPC) coefficients
are readily estimated using classical methods. In addition to
providing a good approximation to the vocal tract filter (VTF),
the prediction error waveform is a first-order approximation
to the voice source waveform (VSW), which approximates
the derivative of the glottal flow [2]. There are, however,
dependencies that are difficult to disentangle. LPC is estimated
based on the spectrum containing the product of VSW and
VTF spectra. The effects of VSW contamination in LPC can
be removed by seeking to estimate LPC only during the time
that the glottis is closed [2]. This is also subject to error since
the method relies on estimating the glottal closed phase, and
can fail if the vocal folds do not close completely or quickly.

B. Proposed Approach: Glottal Mixture Model (GLOMM)

Instead of attempting to reconstruct the VSW accurately,
we define the VSW more loosely as all speaker-dependent
effects that cannot be attributed to the all-pole filter and that
repeat with each glottal closure (every pitch period). We then
construct the VSW for a given speaker from scaled and shifted
glottal pulses from a speaker-dependent glottal pulse library.
Knowledge of the speaker’s glottal pulse library can then be
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used to augment speaker-regognition statistics based on short-
time spectral information. Terminology used in this paper is
tabulated below:

Linear prediction error time-series obtained
by LPC.

Glottal closure. Detected peak in the LPETS
assumed to be caused by closure of the glottis.
Glottal data window. A Tength 2¢) + T window
n/a | centered on the LPETS precisely at the time of

the detected glottal closure.
Glottal pulse. One of the library of fixed wave-

w/a forms attributed to a given speaker’s voice pro-
duction. They are obtained by clustering glottal

data windows. . .
Voice Source Waveform. The voice driving

function, assuming vocal tract is all-pole filter.
Synthetic VSW. Estimate of the VSW made up
of scaled and shifted glottal pulses.

LPETS

n/a

II. ALGORITHM DESCRIPTION
A. Linear Prediction-Error Time-Series (LPETS)

Assume we have data from multiple speakers, consisting
of multiple utterances of each speaker. Let the speech data be
divided into 50% overlapped Hanning-weigthed frames of size
Nppr samples. Independently in each frame, we estimate LPC
of order P using classical methods (auto-correlation followed
by Levinson-Durbin). Linear prediction coding (LPC) is a
widely-used approach in speech and time-series analysis. It is
well known that the linear prediction error time-series (LPETS)
is a first-order approximation to the voice-source waveform,
i.e. the vocal tract input waveform when the vocal tract is
seen as an all-pole filter [3]. The LPETS is obtained in each
frame in the frequency-domain by multiplying the DFT of the
input data by the DFT of the prediction-error filter, then taking
the inverse DFT.

Glottal closures are marked by a sharp increase in predic-
tion error. To more robustly detect the glottal closing instant,
we use hilbert envelope of LPETS [4]. So, prior to the final
inverse-DFT, we zero the DFT bins above Nyquist so that
the LPETS will be complex (analytic). Using overlap-add, the
frames of the analytic LPETS are combined to re-construct the
full analytic LPETS of each utterance. An example is shown in
Figure 1, which shows the magnitude of the analytic LPETS.

B. Glottal closure detection

Glottal closures are detected by peak detection of the
magnitude-analytic LPETS. Using a median filter, a time-
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Fig. 1.
time-varying median-filtered threshold. Red circles: detected glottal closures.

varying peak-detection threshold is formed (magenta line in
Figure 1). Local maxima exceeding the threshold are then
detected (red circles in Figure 1). These are the approximate
times of the glottal closures. To get the most accurate estimate
of the glottal closure, we used parabolic interpolation to
estimate the precise peak time with sub-sample accuracy.

C. Glottal Data Windows and Clustering

For each detected glottal closure, we extracted a glottal
data window of length 2Q) + 1, from the analytic LPETS,
where () is the glottal data window half-length. We used a
value of @ giving a glottal data window length of 0.01 sec for
both male and female speakers. Since we have estimated the
peak time with sub-sample accuracy, the glottal data window
can be sub-sample time-shifted (in the frequency domain)
so that the peak occurs at exactly the @ + 1-th sample of
the glottal data window. It is well known that a speaker’s
VSW is significantly influenced by emotional factors, stress,
and loudness. Therefore, to estimate the VSW, we cluster the
glottal data windows before averaging to obtain a library of
potential glottal pulse waveforms. Separately for each speaker,
we estimated the glottal pulse library as follows: (a) We
collected glottal data windows that were time-corrected and
normalized to have a peak magnitide value of 1 exactly at
sample @ + 1. (b) We performed principal component analysis
(PCA) to remove noise from the collected pulses, taking the
largest D = 30 singular vectors. (¢) A Gaussian mixture of
M = 5 components was then used to cluster the data in
the D-dimensional space formed by projecting the glottal data
windows onto the singular vectors. The clustering itself on the
feature space is visualized in Figure 2 created by projecting
the glottal data windows onto the first two singular vectors.
It is clear that natural clusters have formed in the scatter
diagram and that the Gaussian mixture has properly identified
some clusters. The center of each cluster is defined by the
30-dimensional mean of the corresponding Gaussian mixture
component. The cluster centers are then projected back to
the original window length by multiplying by the basis set
of singular vector, forming the library of glottal pulses. The
resulting library of glottal pulses is illustrated in Figure 3.

D. Synthetic VSW

The next step is to construct a synthetic VSW using
the speaker’s library of glottal waveforms. Each glottal data
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Dark blue: The magnitude of the analytic LPETS for a portion of an utterance reconstructed using overlap-add from individual frames. Pink: the

Fig. 2.  Illustration of clustering in the feature space using all available
training data for one speaker.
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Fig. 3. The glottal pulse library for TIMIT speaker “msth1”.

window is “classified” using the Gaussian mixture model as
one of the M library pulses. A synthetic VSW is then formed
by scaling and time-shifing the library pulses to correspond
to the amplitude and time of each detected glottal pulse. The
process is illustrated in Figure 4. On the top of the figure, we
see a section of the LPETS (real part). We have indicated with
red circles the location of detected glottal closures, and placed
a number indicating which glottal library pulse best matches.
In the lower graph is the synthetic VSW formed from delayed
and scaled glottal library pulses from the speaker’s library.
Note that not only are the glottal closures detected, but also
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Fig. 4. Example of synthetic VSW. Top: Section of LPETS (real part) reconstructed from from multiple frames. Bottom: synthetic VSW. This plot was made

after the tenth iteration of the GLOMM algorithm.

the error peaks at the period half-times, which can occur due
to laryngealization or glottal opening [4].

E. LPC re-estimation

Next, the synthetic VSW is re-segmented into 50% over-
lapped Hanning-weighted frames. In Figure 5 (bottom) we
see a hanning-weighted VSW frame created from VSW in
Figure 4. This produces a synthetic VSW for each frame. Then,
to complete the GLOMM algorithm, the LPC coefficients
are re-estimated independently in each frame. But instead of
using the classical ACF/Levinson method, the LPC coefficients
are estimating by optimization of the fit between the input
data time-series in the frame and the synthetic time-series
produced by passing the synthetic VSW through the all-pole
filter corresponding to the LPC coefficients.

We now mathematically describe the LPC re-estimation
approach. Let x be the un-weighted input data of the frame.
Let function h( ) represent the Hanning-weighting operation.
Thus, h(x) is the Hanning-weighted input data. Let u be the
corresponding frame of the synthetic source waveform that
we have constructed and is assumed to be fixed. Let y be
the vocal-tract filtered synthetic source waveform. In the time
domain, the vocal tract filtering is

P
Vo= @il i + i ()
i=1

This operation is much easier to do in the frequency domain.
We have

Yy = Ug/Ag, 1<k < Nrpr,

where the capital letter quantities are the DFT coefficients
of the corresponding lower-case quantities. The Hanning-
weighted y, i.e. h(y), should closely approximate h(x) up to
an unknown scale factor. If we model the approximation error
between h(x) and h(y) as Gaussian, we obtain the Gaussian
distribution:

L(x;a,02,¢) = (2r) V2 det(R) /2
(2)
-exp { =5 [A(x) — ¢ h(y)]' R~ [h(x) — c h(y)]}
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where c¢ is a scale factor and covariance matrix R conforms
to the autoregressive process defined by a and o2. We call
this a dual-mode model because the LPC coefficients “a”
enter into the model twice, first coherently through (1) as a
waveform filter, and second incoherently through covariance
matrix R, which is the theoretical covariance of the autore-
gressive process corresponding to coefficients a. In effect, this
assumes all the voice energy passes through the vocal tract.
This assumption does not hurt, even when there is no voiced
speech, and no detected glottal closures, because the LPC
parameters are not used for speaker identification.

The LPC coefficients in each frame are re-estimated by
maximizing (2) over the LPC coefficients. And, finally, the
GLOMM algorithm repeats with formation of the LPETS
(Section II-A) using the updated LPC coefficients. Typically
the algorithm stops changing significantly after about three to
five iterations. After several iterations, the waveform match
between h(x) and h(y) can be strikingly good. In Figure
5 (top), we see h(x) and h(y) overlaid (h(y) is shown in
darker color). The match is very close. Equally impressive is
the match between the synthetic VSW and the LPETS Figure
5 (bottom).

The statistical model (2) can be used not just to estimate the
LPC coefficients, but can also serve as a likelihood function.
Let the total log-likelihood be

S = ZIOgL(Xk;ékaa.I%aék)’ (3)
k

where k ranges over the available data segments for the
speaker, and aj,6%,¢é; are the frame-dependent parameter
estimates. Intuitively, S is the measure of fit between the data
and the GLOMM model, which assumes the data is generated
by glottal pulses from the given library, passed through an all-
pole filter. As the algorithm iterates, the glottal pulse library
improves and S generally increases.

F. GLOMM Algorithm Summary

To initialize GLOMM, the data for a given speaker is
segmented into frames and the LPC coefficients are obtained
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Fig. 5. Top: input data h(x) and h(y) (darker color). Bottom: LPETS and

synthetic VSW (darker color), after 10 GLOMM iterations.

separately in each frame using classical methods. In each iter-
ation, we (a) compute the LPETS, (b) detect glottal closures,
(c) collect glottal data windows, (d) cluster the glottal data
windows to obtain the glottal pulse library, (e) construct the
synthetic VSW, (f) segment the synthetic VSW, then (g) re-
estimate the LPC in each frame.

G. Speaker-Identification Method

After several iterations of GLOMM, we discard the LPC
parameters (which is stored for each data frame). We keep only
the glottal pulse library for each speaker. Now, assume we are
given a test utterance for the purpose of identifying the true
speaker. There are two potential ways to use the glottal pulse
libraries to identify a speaker in the “closed” classification
problem (where each candidate speaker is known).

In the first method (total likelihood), we run the GLOMM
algorithm a few iterations using the candidate speaker’s glottal
pulse library to determine total likelihood S - when iterating,
the glottal pulse library is held fixed and not updated. S is
then used as the classifier likelihood statistic.

The second method (glottal pulse matching) is to run
GLOMM to extract a glottal pulse library from the test
utterance. This glottal pulse library is discarded, but the
extracted glottal data windows w (See section II-C) are kept
and matched to the glottal pulse library of each candidate
speaker using the GMM.

III. UNIVERSAL BACKGROUND MODEL (UBM)

Our goal is to augment existing speaker-ID methods with
additional voice source information. For a state of the art
“existing method”, we used the universal background model
(UBM) [5]. Although the I-vector approach [6] has replaced
UBM as state of the art, this is primarily due to better
performance of I-vector approaches in the presence of varying
recording methods and environments [7]. Since our initial
experiments will be conducted using stable recording method
and environment, we are justified in using UBM as state of
the art.
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UBM uses a Gaussian mixture model (GMM) trained on
all available speakers. The GMM is trained using a “bag
of features” approach where the features (typically MFCC)
extracted from short-time Fourier transform analysis of the
available utterances are trained without time ordering. Let z
be a feature vector, typically of dimension 19 for MFCC, 38
for MFCC+A. The GMM is written

M
Pz A) = aiN(z; p;, ), )
i=1

where N (z; p;, 3;) is the Gaussian kernel

Wem{—l(z—u)'ﬁl(z —u)},

N(Z,[,L,E): |2‘1/2 2
&)

and A is the collection of UBM parameters
A= {Oéiall’ia Eia VZ}

Generally, X; are diagonal covariance matrices. This is called
the wuniversal background model because it is trained on all
speakers. In the process called enrollment, a speaker-dependent
GMM is obtained by adapting the UBM to the data of a given
speaker [5]. To classify an utterance [z1,2s2...Zk]| using the
UBM (4), we simply apply the maximum likelihood rule:

K
§ = argmax {Z log p(zk; As)} (6)

k=1

where A, are the speaker-adapted GMMs (by adapting only
the means).

IV. SPEAKER-IDENTIFICATION EXPERIMENTS
A. TIMIT Data

The TIMIT speech recognition corpus consists of 630 male
and female speakers, each having 10 utterances, averaging
about 3 seconds each, and divided into eight “SX” and “SI” ut-
terances and two “SA” utterances. In the speaker identification
experiments, we trained on all eight “SX” and “SI” utterances.
In each experiment, we selected 200 speakers at random. Then,
for each speaker, we selected one of the “SA” utterances at
random and classified it against the closed set of 200 speakers.
We performed just 2 independent 200 x 200 experiments for
a total of 400 individual classification decisions. We used no
voice activity dectection, always using the complete utterances.

1) Data pre-processing: The raw TIMIT data is sampled
at 16kHz and stored as signed 16-bit quantized data, which
is read as a real number in the range [-1,1]. To this data is
added independent standard Gaussian noise at three standard
deviations: o € [0, .002, .0026,.004 , giving an average SNR
of oo, 16.5 dB, 13.5, and 10.5 dB, respectively. We measured
SNR as the total energy in the noise-free utterance divided by
the total added noise energy. After adding noise, the data was
down-sampled 2:1 to a sample rate of 8 kHz. Noise was added
to both training and testing data.
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2) UBM implementation: We used an M = 100-mixture
UBM, trained on all speakers in the training set for all
experiments. We used HTK [8] to compute the 19-dimensional
MFCC features using a 25 millisecond window with 10
millisecond frame rate. The HTK configuration parameters
are TARGETRATE = 100000, WINDOWSIZE = 250000,
PREEMCOEF = 0.96, CEPLIFTER = 22, NUMCHANS = 20,
NUMCEPS = 19, DELTAWINDOW = 3, ENORMALISE =
F, SOURCERATE=1250, SAVECOMPRESSED = T, SAVE-
WITHCRC = F, USEHAMMING = T, TARGETKIND =
MECC .

3) Hybrid Classifier: As a hybrid GLOMM-UBM classi-
fier, we formed the combined statistic

Ls = wi LY + wy LY + w3 S, @)

where LU is the UBM statistic LV = Y& log p(zs; A,)
computed using the speaker-adapted parameters A,, S, is the
GLOMM total likelihood S5 (equation 3) computed using
the glottal pulse library for speaker s, and L% is the total
log-likelihood for the extracted glottal data windows using
a Gaussian mixture formed from the glottal pulse library of
speaker s (See section II-G).

4) Results: With w; = 1, we optimized the parameters
w2, w3. The values of wy = .025,w3 = .43 were used at
all SNRs. In Figure 6, we show the error for the mixture (7)
as a function of SNR. Also shown are the individual error
performances for UBM only (w2 = w3 = 0), GLOMM only
(w; = 0). The clean speech case (infinite SNR) is plotted
on the X-axis at SNR=35. For clean speech, we measured
just one error for GLOMM+UBM in random 400 trials. It
is remarkable that GLOMM alone achieves about the same
performance as UBM, when GLOMM clearly discards most
of the spectral information (LPC is used only to extract VSW).
The significant reduction in error when combining GLOMM
and UBM ( a factor of 3 or more) attests to the independent
speaker identity information contained in the VSW.
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Fig. 6. Performance as a function of SNR - Clean speech plotted at 35 dB.

We found a number of comparative results in the literature
for the 200-speaker experiment [9], [10], [11], [12], [13], [3],
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[14], which we plotted in Figure 6 as bibliography citations.
Some slight differences exist in experimental setups. None of
them downsample the data to 16 kHz as we do. In [10], an
even male/female split is used and training data is clean. In [9],
training data is clean. Nossair [13] used 7 training utterances
(not 8). Reynolds [14] used a population size of 168 speakers.

V. CONCLUSIONS

In this paper, we have presented a means of extracting
voice source information from a given speaker as a library of
glottal pulses. Using just this glottal pulse library, we have
demonstrated comparable speaker-ID performance to UBM in
a 200-speaker experiment from TIMIT corpus. However, when
combined with UBM, a factor of three reduction in error is
demonstrated.
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