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Abstract—In this paper, we first introduce a novel sub-class
of recursive linear-in-the-parameters nonlinear filters, called
recursive functional link polynomial filters, which are derived
by using the constructive rule of Volterra filters. These filters
are universal approximators, according to the Stone-Weierstrass
theorem, and offer a remedy to the main drawback of their finite
memory counterparts, that is the curse of dimensionality. Since
recursive nonlinear filters become, in general, unstable for large
input signals, we then consider a simple stabilization procedure
by slightly modifying the input-output relationship of recursive
functional link polynomial filters. The resulting filters are always
stable and, even though no more universal approximators, still
offer good modeling performance for nonlinear systems.

Index Terms—Linear-in-the-parameters nonlinear filters, re-
cursive functional link polynomial filters, universal approxima-
tors, bounded-input bounded-output stability.

I. INTRODUCTION

Among the variety of nonlinear models studied in the

literature, linear-in-the-parameters (LIP) nonlinear filters are

widely utilized for the identification of unknown nonlinear

systems. Their characterizing property is the linearity of the

output with respect to the filter coefficients. Applications range

from the computation of efficient models [1], [2], [3], [4], [5],

to nonlinear active noise control [6], [7], [8], [9] and nonlinear

acoustic echo cancellation [10], [11], [12], [13], [14].

LIP nonlinear filters can be subdivided in models with finite

or infinite memory [15]. Recently, a sub-class of the finite-

memory LIP nonlinear filters formed with the so-called func-

tional link polynomial (FLiP) filters, has been introduced [16].

The basis functions of FLiP filters are polynomials of nonlin-

ear expansions of delayed input samples. The characterizing

property of these filters is the fact that, by construction, their

basis functions satisfy the same conditions of the triangular

representation of Volterra filters. Therefore, all the filters in

this sub-class are universal approximators, according to the

Stone-Weierstrass theorem [17].

Nonlinear filters with infinite memory have also been in-

troduced, as recursive second-order Volterra filters [18], [19],

[20], [21] recursive functional link artificial neural networks

[22], [23] and bilinear filters [15]. These filters are usually

more parsimonious in the use of coefficients than their finite

memory counterparts, and thus constitute an efficient solu-

tion to limit the complexity of finite memory models. The

drawback is the fact that they usually become unstable for

large amplitudes of the input signal. In the literature, this

problem has been solved by deriving sufficient conditions for

the bounded-input bounded-output (BIBO) stability, which are

specific for any filter.

In this paper, we first introduce the infinite-memory versions

of the FLiP filters mentioned above, using a recursive input-

output relationship that exploits finite sets of input and past

output samples. We show that, within simple conditions,

recursive FLiP (RFLiP) filters satisfy the Stone-Weierstrass

theorem. Therefore, RFLiP filters are able to arbitrarily well

approximate any causal, time-invariant, infinite-memory, con-

tinuous, nonlinear system. Then, we consider the problem of

their stability according to the BIBO criterion. We slightly

modify the input-output relationship of the RFLiP filters using

a simple nonlinear mapping of the basis functions depending

on the past output samples. As a consequence, the BIBO

stability is guaranteed for any finite-amplitude input signal.

The stabilized RFLiP (SRFLiP) filters are no more, in princi-

ple, universal approximators but give anyway sufficiently good

approximation performance in real-world environments.

The paper is organized as follows. In Section II, RFLiP

filters are introduced as universal approximators for recursive

nonlinear systems. Stabilized RFLiP filters are considered in

Section III. Validation results, including an experiment on a

benchmark for nonlinear system identification, are presented

in Section IV. Conclusions follow in Section V.

II. INFINITE-MEMORY FUNCTIONAL LINK POLYNOMIAL

FILTERS

We assume here that the unknown nonlinear system with

infinite memory is represented by the input-output relationship

y(n) = f [x(n), . . . , x(n−N), y(n− 1), . . . , y(n−M)], (1)

where f is a real continuous function and x(n), y(n) are real-

valued sequences. In other words, at each time step n, the

output is considered as a function of the present and N past

values of the input x(n) and of the M past values of the output

y(n). Then, the input-output relationship of an RFLiP filter is

given by

ŷ(n) = f̂ [ξ0, . . . , ξN , ξN+1, . . . , ξN+M ], (2)

where, for convenience,

ξ0 = x(n), . . . , ξN = x(n−N),

ξN+1 = ŷ(n− 1), . . . , ξN+M = ŷ(n−M), (3)
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and ŷ(n) is the output of the RFLiP filter. In (2), f̂ is assumed

to be a linear combination of basis functions fi(n) in the

variables ξ0, . . . , ξN , ξN+1, . . . , ξN+M ,

ŷ(n) =

NT−1∑

i=0

hifi(n). (4)

with NT the total number of basis functions considered. The

derivation of a complete set of basis functions fi for the RFLiP

filter follows the same rule used for FLiP filters in [16]. Let us

assume that a set of basis functions without memory satisfying

all the requirements of the Stone-Weierstrass theorem is given

by the ordered set

g0[ξ], g1[ξ], g2[ξ], g3[ξ], . . . (5)

where g0[ξ] is the basis function of order 0, usually assumed

equal to 1, g1[ξ] is an odd basis function of order 1, g2[ξ] is

an even basis function of order 2, and so on. A complete set

of basis functions for a system with memory is obtained by

writing first the basis functions gj [ξ] in (5) for the arguments

ξ0, ξ1, . . . , ξN , ξN+1, . . . , ξN+M . Then, the functions gj of

different variables are multiplied one to each other in any

possible manner, taking care of avoiding repetitions, as in

the triangular representation of Volterra filters. It should be

noted that in such a way cross products of basis functions

involving input and past output samples are formed, in contrast

to polynomial filters previously introduced in the literature

[18], [19], [20], [21]. The basis functions fi for an RFLiP

filter of order P = 0, 1, 2, 3 are given in Table I. It is worth

noting that the total number NT of basis functions, or filter

coefficients, including all the kernels of order 0, . . . , P , is

equal to that of a Volterra filter of the same order and memory

equal to N +M + 1,

NT =

(
N +M + 1 + P

N +M + 1

)
. (6)

Even though the number of terms increases geometrically

with the parameters N , M and exponentially with the or-

der P , RFLiP filters are often able to provide much more

compact representations than their non-recursive counterparts.

Therefore, they constitute an efficient solution to limit the

complexity of the nonlinear models.

A. RFLiP filters as universal approximators

Let us assume that the unknown system with the input-

output relationship in (1) is stable. In what follows, we prove

that RFLiP filters can arbitrarily well approximate the system

in (1), and thus are universal approximators. The proof follows

similar arguments as in [24]. The following two stability

conditions are exploited.

Assumption 1: The system in (1) is BIBO stable for |x(n)| ≤
R with |y(n)| ≤ A for all n.

Without loss in generality, we can assume R = 1 and A =
1. In fact, if R 6= 1 and/or A 6= 1, x(n) and y(n) can be

scaled as x′(n) = x(n)/R and y′(n) = y(n)/A and then the

identification refers to the equivalent system

y′(n) = f ′[x′(n), . . . , x′(n−N), y′(n−1), . . . , y′(n−M)] =

TABLE I
BASIS FUNCTIONS fi OF THE RFLIP FILTER

Order 0

g0 = 1.

Order 1

g1[ξ0], . . . , g1[ξN ], g1[ξN+1], . . . , g1[ξN+M ].

Order 2

g2[ξ0], . . . , g2[ξN ], g2[ξN+1], . . . , g2[ξN+M ],
g1[ξ0]g1[ξ1], . . . , g1[ξN+M−1]g1[ξN+M ],
g1[ξ0]g1[ξ2], . . . , g1[ξN+M−2]g1[ξN+M ],

.

.

.
g1[ξ0]g1[ξN+M ].

Order 3

g3[ξ0], . . . , g3[ξN ], g3[ξN+1], . . . , g3[ξN+M ],
g2[ξ0]g1[ξ1], . . . , g2[ξN+M−1]g1[ξN+M ],

.

.

.
g2[ξ0]g1[ξN+M ],

g1[ξ0]g2[ξ1], . . . , g1[ξN+M−1]g2[ξN+M ],
.
.
.

g1[ξ0]g2[ξN+M ],
.
.
.

g1[ξ0]g1[ξ1]g1[ξ2], . . . ,
g1[ξN+M−2]g1[ξN+M−1]g1[ξN+M ].

1

A
f [Rx′(n), . . . , Rx′(n−N), Ay′(n− 1), . . . , Ay′(n−M)].

Assumption 2: Given the perturbed system

ỹ(n) = f [x(n), . . . , x(n−N), ỹ(n−1), . . . , ỹ(n−M)]+ν(n),
(7)

for any θ > 0 there exist ǫ > 0 such that when |ν(n)| < ǫ ∀n
it is

|y(n)− ỹ(n)| < θ ∀n, (8)

with y(n) the output of the system in (1).

Assumption 2 means that if we apply a small perturbation

to the system in (1), the output remains close to y(n).
If these conditions are satisfied, the recursive nonlinear

system in (1) is arbitrarily well approximated by an appropriate

set of basis functions built as those shown in Table I up to the

order P = 3. Indeed, for any ǫ > 0, according to the Stone-

Weierstrass theorem, there is a linear combination of basis

functions, shortly noted as f̃(ξ0, . . . , ξN , ξN+1, . . . , ξN+M ),
such that for any set of values ξ0, . . . , ξN , ξN+1, . . . , ξN+M

in [−1,+1] it results

|f(ξ0, . . . , ξN , ξN+1, . . . , ξN+M )−

f̃(ξ0, . . . , ξN , ξN+1, . . . , ξN+M )| < ǫ. (9)

Let us now consider the system

ỹ(n) = f̃ [x(n), . . . , x(n−N), ỹ(n−1), . . . , ỹ(n−M)]. (10)

According to (9) it is

ỹ(n) = f [x(n), . . . , x(n−N), ỹ(n−1), . . . , ỹ(n−M)]+ν(n)
(11)
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with |ν(n)| < ǫ. According to Assumption 2 and the Stone-

Weierstrass theorem, for any θ > 0 there is a sufficiently small

ǫ > 0 and a linear combination of basis functions such that the

error between the output of (1) and (10) is |y(n)− ỹ(n)| < θ.

This fact means that, by using a sufficiently large number NT

of basis functions of a sufficiently high order P , it is possible

to approximate the recursive system in (1) within any required

precision. Therefore, the output ŷ(n) of the modeling filter can

be written as in (4).

B. Members of the RFLiP sub-class

Any choice of the set of 1-dimensional basis functions

gj [ξ], satisfying the requirements of the Stone-Weierstrass

theorem, leads to a different type of RFLiP filter. For example,

a recursive Volterra filter is defined by using as gj [ξ] the

monomials

1, ξ, ξ2, ξ3, . . . (12)

A recursive even mirror Fourier nonlinear (EMFN) filter is

defined by using as gj [ξ] the even mirror symmetric trigono-

metric functions

1, sin[
1

2
πξ], cos[πξ], sin[

3

2
πξ], . . . , cos[lπξ], sin[

2l + 1

2
πξ], . . .

(13)

where 1 is the basis function of order 0, sin[ 2l+1

2
πξ] is a basis

function of order 2l + 1, and cos[lπξ] is a basis function of

order 2l, with l a natural number [25].

A recursive Legendre nonlinear filter is defined by using as

gj [ξ] the Legendre polynomials

leg0[ξ], leg1[ξ], leg2[ξ], leg3[ξ], . . . (14)

The Legendre polynomials legl+1[ξ] are obtained from the

recursive relation

legl+1[ξ] =
2l + 1

l + 1
ξ · legl[ξ]−

l

l + 1
legl−1[ξ], (15)

where leg0[ξ] = 1, leg1[ξ] = ξ, and the natural number l is

the order of the basis function [26].

A recursive Chebyshev nonlinear filter is defined by using

as gj [ξ] the Chebyshev polynomials of first kind

T0[ξ],T1[ξ],T2[ξ],T3[ξ], . . . (16)

The Chebyshev polynomials are generated by the following

recursive relation:

Tl+1[ξ] = 2ξTl[ξ]− Tl−1[ξ], (17)

where T0[ξ] = 1, T1[ξ] = ξ and the natural number l is the

order of the basis function [27].

III. STABLE RECURSIVE FUNCTIONAL LINK POLYNOMIAL

FILTERS

It is well known that recursive filters with fixed coefficients

become unstable, according to the BIBO criterion, for given

input signals. In contrast, it has been recently shown that the

recursive EMFN filter, a member of the RFLiP sub-class,

is intrinsically BIBO stable [24]. Unfortunately, the other

members of this sub-class do not possess this property. Instead

of deriving sufficient conditions that merely fix an upper bound

on the amplitude of the input signal, our aim is here to

stabilize these filters. To this purpose, we define a new sub-

class of stable RFLiP (SRFLiP) filters which is obtained by

using the hyperbolic tangent to bound to the unity the basis

functions depending on the past outputs. More specifically,

we replace the basis functions gj [ξ] of the output arguments

ξN+1, . . . , ξN+M with the functions tanh{gj [ξ]}. As a con-

sequence, any resulting basis function f̄i(n) is bounded by an

appropriate finite number |ki| for any input signal with finite

amplitude. Then, from (4) it results

|ŷ(n)| ≤

NT−1∑

i=0

|hi||f̄i(n)| ≤

NT−1∑

i=0

|hi||ki| = K, (18)

where K is a finite number. Therefore, for any bounded input

signal x(n) the output signal ŷ(n) is also bounded for any

n. It should be noted that the SRFLiP filters are no more

universal approximators. However, for small input signals the

behavior of SRFLiP is close to that of RFLiP filters, and even

for large input signals their approximation performance remain

sufficiently good.

IV. EXPERIMENTAL RESULTS

A. The adaptation algorithm

To model an unknown system, adaptive RFLiP and SRFLiP

filters can be exploited. In this section, we use as adaptation

algorithm the normalized version of the output-error pseudo-

LMS algorithm based on the pseudolinear regression proposed

in [28] for adaptive IIR filters. Indeed, it is a simple algorithm

that can be used for recursive LIP nonlinear filters, too [15].

Let us arrange the basis functions in (4) (or the modified basis

function f̄i(n)) in the vector

f(n) = [f1(n), f2(n), . . . , fNT
(n)]T (19)

and the corresponding coefficients in the vector

h(n) = [h1(n), h2(n), . . . , hNT
(n)]T . (20)

Then, the pseudo-NLMS algorithm is given by

h(n+ 1) = h(n) +
µ

fT (n)f(n)
f(n)e(n), (21)

where µ is the step size and e(n) = y(n) − ŷ(n). The

complexity of the algorithm is of O(NT) multiplications and

additions per time instant.

B. An experiment on BIBO stability

We first propose a simulation experiment to check the

stability of SRFLiP filters. The unknown system is described

by a second-order REMFN filter which is BIBO stable for any

input signal with finite amplitude

y(n) = 0.7733 sin[π/2 · x(n)]−

0.0991 sin[π/2 · x(n− 1)] sin[π/2 · x(n− 2)]−

0.3160 sin[π/2 · y(n− 1)] + 0.0052 cos[πy(n− 1)]−

0.3756 sin[π/2 · y(n− 1)] sin[π/2 · y(n− 2)] +

0.3500 sin[π/2 · x(n− 1)] sin[π/2 · y(n− 2)]. (22)
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TABLE II
COEFFICIENTS OF THE RV AND SRV FILTERS

RV a1 = 1.2062, a12 = 0.3693, b1 = −0.4917, b11 = 0.1586, b12 = −1.0153, c12 = 0.8122
SRV a′

1
= 1.2061, a′

12
= 0.3890, b′

1
= −0.4968, b′

11
= 0.1715, b′

12
= −1.0523, c′

12
= 0.8310
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Fig. 1. Outputs from the modeling filters: (a) RV filter, (b) stabilized RV filter.

TABLE III
NMSE IN DB FOR THE SILVER BOX EXPERIMENT

REMFN RV SRV RL SRL RC SRC BIL SBIL EMFN VOL LEG CHEB
−18.2 −19.7 −19.6 −19.2 −19.0 −18.6 −17.9 −18.6 −18.6 −3.9 −4.0 −3.9 −3.9

In our simulations, we use as input a zero-mean Gaussian

signal with variance 0.01, so that the range of the input

signal is about ±0.42. The unknown system is modeled with

a second-order recursive Volterra (RV) filter and a stabilized

RV (SRV) filter, respectively. The RV and SRV filters have

the parameters N = 1 and M = 2 to match the orders of the

basis functions of the unknown system, i.e.,

ŷ(n) = a1x(n) + a12x(n− 1)x(n− 2) + b1ŷ(n− 1) +

b11ŷ
2(n−1)+ b12ŷ(n−1)ŷ(n−2)+ c12x(n−1)ŷ(n−2).

(23)

The SRV filter is then described by the following expression

ŷ(n) = a′1x(n) + a′12x(n− 1)x(n− 2)+ b′1 tanh[ŷ(n− 1)] +

b′11 tanh[ŷ
2(n− 1)] + b′12 tanh[ŷ(n− 1)] tanh[ŷ(n− 2)]+

c′12x(n− 1) tanh[ŷ(n− 2)]. (24)

An independent zero-mean Gaussian noise is added to the

output signal, so that the output SNR is equal to 20dB. The

step size is chosen equal to 0.025 and 100 independent runs are

performed. With this set of specifics, the learning curves of RV

and SRV filters are in practice coincident. Moreover, the mean-

square errors, normalized to the power of the output signal

and measured as mean values on the last 2000 time instants,

result in −19.3 dB and −19.4 dB for the RV and SRV filters,

respectively. These facts confirm that, for small input signals,

the SRV filter gives a good approximation of the unknown

system. Then, the RV and SRV filters are implemented using

the coefficients in Table II, computed as the mean values on

the 100 independent runs and the last 2000 time instants. The

variance of the zero-mean Gaussian input signal is changed to

0.04 after 20 000 time instants, so that the input signal covers

a range of about ±0.80. Figure 1 illustrates the behavior of

the two filters. Till to 20 000 time instants they give the same

outputs, but after 20 000 time instants the RV filter becomes

unstable while the SRV filter remains stable, with normalized

mean square error (NMSE) equal to −18.1 dB at 40 000 time

instants.

C. An identification experiment

We now consider an experiment involving real data gener-

ated by an electronic nonlinear feedback system (named “the

silver box”), available in the literature for benchmarking in

system identification [29]. The silver box describes a second

order mechanical system with a nonlinear spring constant. In

order to identify the system, one of the random odd multi-

sine sequences composing the benchmarking data has been

extracted. The input and output sequences are formed by 8700
samples (starting at sample 49 270). First, the input sequence

has been normalized by its maximum value. Then, the input

and output sequences have been periodically repeated ten times

to form the signals used in the identification. The system

has been identified with different recursive and non-recursive

nonlinear filters, exploiting the output-error pseudo-NLMS in

(21) and the standard NLMS algorithms, respectively. Table III

provides the NMSE on the last 8700 samples for the following

filters: recursive EMFN (REMFN), recursive Volterra (RV),

stabilized recursive Volterra (SRV), recursive Legendre (RL),

stabilized recursive Legendre (SRL), recursive Chebyshev

(RC), stabilized recursive Chebyshev (SRC), bilinear filter

(BIL), stabilized bilinear filter (SBIL), EMFN, Volterra (VOL),

Legendre (LEG), and Chebyshev (CHEB). The recursive

EMFN, Volterra, Legendre, and Chebyshev filters have order

P = 3, parameters N = 6, M = 6 and 560 coefficients. The
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bilinear filter [15] has parameters N = M = 23 and 552
coefficients and is a particular case of recursive Volterra filter,

as defined in this paper. The stabilized bilinear filter has been

obtained as described in Section III, i.e., replacing ŷ(n − i)
with tanh[ŷ(n−i)] in the input-output relationship, as follows

ŷ(n) =
N∑

i=0

aix(n− i) +
M∑

j=1

bj tanh[ŷ(n− j)]

+

N∑

i=0

M∑

j=1

ci,jx(n− i) tanh[ŷ(n− j)]. (25)

The non-recursive filters have order P = 3, parameter N = 12
and 560 coefficients. For each filter, we have chosen the step-

size that guarantees the best NMSE. Given the oscillatory

nature of the output signal, the recursive filters are best

fitted to model the nonlinear system. All recursive filters

provide similar results, with the best results provided by the

recursive Volterra and stabilized recursive Volterra filters. The

stabilization does not influence the performance of the filters.

On the contrary, in the non-recursive filters a memory length

of 13 samples (i.e., N = 12) is insufficient for modeling the

nonlinear system behavior. Performance similar to those of the

recursive filters has been obtained with a Volterra filter with

N = 40 and 13 244 coefficients.

V. CONCLUSIONS

In this paper, two novel subclasses of LIP nonlinear filters

are described: RFLiP filters, that are universal approxima-

tors but potentially unstable, and SRFLiP filters, that give

performance close to those of RFLiP filters and are always

stable. While these filters already represent unknown systems

with fewer coefficients than their finite memory counterparts,

a study is underway for further reducing their complexity

exploiting sparsity.
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