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Abstract—We propose a technique for detection of
neovascularization near the optic disk due to diabetic
retinopathy. Images of the retinal fundus are analyzed using
a measure of angular spread of the Fourier power spectrum
of the gradient magnitude of the original images using
the horizontal and vertical Prewitt operators. The entropy
of the angular spread of the Fourier power spectrum
and spatial variance are adopted to distinguish normal
optic disks from those affected by neovascularization. The
two-sided Kolmogorov–Smirnov nonparametric test is used
to evaluate the significance of the difference of entropy
between normal and abnormal optic disks. Based on the
computed measures, we employ a linear classifier to dis-
criminate normal from abnormal optic disks. The proposed
method was able to classify a small set of five normal and
five neovascularization cases with 100% accuracy.

Index Terms—Retinal Image Analysis, Fourier Spectral
Analysis, Neovascularization.

I. INTRODUCTION

A. Diabetic Retinopathy

Diabetes can cause retinopathy, referred to as diabetic

retinopathy [1]. Diabetic retinopathy includes damage to

retinal blood vessels. Diabetic retinopathy is classified

into two major groups: proliferative (PDR) and nonpro-

liferative diabetic retinopathy (NPDR).

Signs of NPDR include microaneurysms, intraretinal

hemorrhages, and microvascular abnormalities [1]. PDR

includes the phenomenon of neovascularization near

the optic disk, abbreviated as NVD, or elsewhere in

the retina (NVE) [1]. The chances of development of

diabetic retinopathy are strongly correlated with factors

such as the duration of diabetes and the degree of hyper-

glycemia [1]. Diabetic retinopathy has been identified as

one of the main preventable causes of blindness [1], [2].

B. Computer-aided Diagnosis of Diabetic Retinopathy

Diabetic retinopathy has attracted the attention of

the research community involved in biomedical image

processing [3], [4]. Several methods have been proposed

to detect different aspects of diabetic retinopathy, such

as microaneurysms [5], [6]; retinal vascular abnormali-

ties [7], [8]; hemorrhage [9]; and tortuosity [10], [11].

C. Related Works

Mudigonda et al. [12] proposed fractal analysis based

on box counting for detection of NVD using fundus im-

ages. Fractal analysis was performed after preprocessing

with Gabors filters to highlight retinal blood vessels.

Daxer [13] employed fractal analysis by means of a

density-density correlation function. After determining a

threshold value for the fractal dimension, Daxer showed

that high values of fractal dimension indicate the exis-

tence of PDR.

Lee et al. [14] proposed a method for automatic

detection of blood vessels for grading the severity of

diabetic retinopathy. The method is based on statistical

texture analysis, high-order spectrum analysis, and frac-

tal analysis.

Akram et al. [15] proposed a method to extract

vascular patterns after enhancing the blood vessels using

wavelet modeling. They employed statistical classifiers

based on the Gaussian mixture model for the detection

of neovascularization with high accuracy up to 95%.

Oloumi et al. [16] proposed the use of blood vessel

thickness for diagnosis of plus disease. They employed

Gabor filters to extract the skeleton of the major temporal

arcade in retinal fundus images of preterm infants, and

achieved an area under the receiver operating character-

istic curve of 0.76. This procedure may be applied to

analyze vascular dilation due to diabetic retinopathy as

well.

D. Scope and Organization of the Present Paper

In this paper, we propose a measure of angular spread

of the Fourier power spectrum for the detection of NVD.

A portion of a retinal fundus image may be classified

into four groups: NVD, NVE, non-optic-disk region of

the retina (NOR), and normal optic disk (NOD). In this

paper, we concentrate on the discrimination of NVD

versus NOD.

Section II provides description of the material and

methods used in the present work. Section III presents

the results obtained. In Section IV, we propose a scheme

for discrimination among the four cases mentioned
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above. In Section V, we draw conclusions and provide

comments on future work.

II. MATERIAL AND METHODS

A. Retinal Fundus Images

The images used in this work were obtained from the

MESSIDOR database [17] and are the same as those

used by Mudigonda et al. [12].

The data set used in the present work includes all five

cases of NVD that could be identified and five cases

of NOD as normal control cases. We perform image

analysis block by block using a window of size 256×256
pixels. The original images are of size 1488 × 2440
pixels. Zero-valued pixels were appended and the images

were reformatted to the size of 1536× 2304 pixels. The

green channels of the original color images were used.

All the computations and analysis were performed with

Matlab R©.

B. Angular Spread of the Fourier Power Spectrum

Let the given image f(m,n) be represented as a real-

valued square matrix of size N ×N . First, the gradient

magnitude of f(m,n) is obtained using the horizontal

and vertical Prewitt operators [18]. In order to reduce

artifacts in the Fourier domain due to truncation, the

von Hann window [19] is applied. The Fourier power

spectrum |Fs(k, l)|
2

is obtained in Cartesian represen-

tation, converted to polar representation, and denoted

as S(r, θ) [18], [20]. When there is no pixel at the

position [r cos(θ), r sin(θ)], we use quadratic interpo-

lation [21]. The origin with frequency values (0, 0)
is adopted as the center. The angle θ is evaluated

at 0◦, 1◦, . . . , 179◦. In this work, we use only matrices

of even size and r = 0, 1, . . . , N/2 − 1. The angular

spread of a Fourier power spectrum is defined as

Sa,b(θ) =

b
∑

r=a

S(r, θ), (1)

where a and b are nonnegative integers smaller than N/2.

In order to perform discrimination between NVD and

NOD, we need a measure of the angular spread of the

Fourier power spectrum. The entropy of angular spread

of a Fourier power spectrum is obtained as

Hθ = −
1

S

∑

θ

Sa,b(θ) log2

(

Sa,b(θ)

S

)

, (2)

measured in bits of information per polar spectrum

component, where S is the normalizing factor given

by S =
∑

θ Sa,b(θ). Due to the presence of randomly

oriented patterns of new blood vessels, regions related to

NVD are expected to have a broader angular spread of

Fourier power spectrum and hence higher Hθ than NOD

regions.

Because the spectral components may not be statisti-

cally independent due to interpolation, the entropy value

obtained as above may be considered as a limiting value.

In addition to Hθ , we use a measure of spatial variance

of the original image f(m,n) as

σ2

f =
1

N2

N−1
∑

m=0

N−1
∑

n=0

[f(m,n)− µf ]
2 , (3)

where µf is the mean value of f(m,n) [18], [20].

Figure 1 shows regions of retinal fundus images

presenting the two situations in which we are interested:

NOD and NVD. From information theory, we know that

the entropy of a given probability density function (PDF)

is at its maximum when it is uniform [18]. Also, we

know that when a PDF presents a few values with high

probability and others with small probability, the entropy

is drastically reduced. Therefore, if the angular spread

of a Fourier power spectrum does not show a defined

direction or a few preferred directions, its entropy will

be high and can be an indicative of neovascularization.

We employed an ad-hoc technique to select the appro-

priate interval [a, b] that causes Sa,b(θ) as in (1) to show

noticeable difference between the two groups of NOD

and NVD. We determined the range [a, b] = [13, 115],
which corresponds to normalized radial frequency in

the interval [0.05, 0.45]. The fraction of energy of the

Fourier power spectrum considered for the computation

of entropy is shown enclosed between the circles in

Figures 1(c) and 1(d).

III. RESULTS

Figure 2 shows the box-plot for the entropy measures

for all of the images used in this study. The entropy mea-

sures were analyzed using the two-sided Kolmogorov–

Smirnov test [22]. The null hypothesis is that the groups

NOD and NVD do not present a significant difference

in the entropy measures of angular spread of the Fourier

power spectrum. Table I shows the p-value and the

statistic Dmax [22]. The result shows that we do not

have the confidence to accept the null hypothesis at the

significance level of 5%.

Discrimination between the NVD and NOD groups

was done using linear statistical classifiers [23], [24].

We employed the entropy of angular spread of the

Fourier power spectrum and spatial variance as discrim-

inant measures, and obtained 100% correct separation

as depicted in Figure 3. Table II shows the parameter

values for the classifier in Figure 3. Due to 100% correct

separation, the resubstitution error is zero and the model
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Figure 1. (a) and (b) show image regions presenting cases of NOD
and NVD, respectively. (c) and (d) show the log-magnitude of the
Fourier power spectra of the gradient magnitude of (a) and (b) using
the horizontal and vertical Prewitt operators. (e) and (f) show the plot of
angular spread of the Fourier power spectra of the gradient magnitude
of (a) and (b) using the horizontal and vertical Prewitt operators. The
angles in (e) and (f) agree with the orientation in (c) and (d) but are
displaced by −90

◦ with respect to the orientation in (a) and (b).
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Figure 2. Box-plot for the entropy of angular spread of the Fourier
power spectrum for five images of NOD and five images of NVD.

Table I
THE RESULTS OF THE TWO-SIDED KOLMOGOROV–SMIRNOV TEST

FOR COMPARISON BETWEEN THE ENTROPY MEASURES FOR NOD
VERSUS NVD

Test p-value Statistic

Kolmogorov–Smirnov 3.80× 10−2 Dmax = 1.00
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Figure 3. Linear classifier for discrimination of NOD versus NVD
based on spatial variance and entropy of angular spread of the Fourier
power spectrum.

loss [24] is low (0.20), which confirm the effectiveness

of the classifier.

IV. PROCEDURE FOR DISCRIMINATION BETWEEN

NVD AND NOD

In general, images from screening programs and clini-

cal studies could contain regions of the four types: NOD,

NOR, NVD, and NVE. Thus, we need a procedure to

classify image regions among the four groups. For this

purpose, we could first detect the optic-disk region with

the method of Rangayyan et al. [25] using Gabor filters

and phase portrait analysis. Then, we can split a given

fundus image into two parts, one containing the optic

disk and the other containing the remaining image. With

the portions of images containing the optic disk, we can

perform discrimination between NOD and NVD using

the methods presented in Section III. With the remain-

ing portions of the images, we can employ the same

procedure modified to discriminate between NOR and

NVE. In this manner, we can detect neovascularization,

whether it occurs near the optic disk or elsewhere in the

retina. Figure 4 shows a block diagram of this procedure,

which is being developed.

Table II
PARAMETERS OF THE LINEAR CLASSIFIER FOR DISCRIMINATION OF

NOD VERSUS NVD

aσ2

f + bHθ + c 0.003σ2

f − 35.184Hθ + 254.431
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NVD versus NODNVE versus NOR
Discrimination of Discrimination of

Region not
containing the optic disk

Region containing
the optic disk

Detection and separation
of the optic disk

Figure 4. Block diagram for discrimination among the four groups
NOD, NOR, NVD, and NVE using a method to detect the optic disk.

V. CONCLUSION AND FUTURE WORK

We have proposed the use of a measure of the angular

spread of the Fourier power spectra of retinal fundus

images for detection of regions of NVD due to diabetic

retinopathy. It was shown that the NVD and NOD groups

present different angular spread of the Fourier power

spectrum. The obtained measures were statistically ana-

lyzed using the two-sided Kolmogorov–Smirnov test and

shown to be significantly different. A linear classifier

provided 100% accuracy with a small set of ten images.

Future work will include the application of the pro-

posed method to images containing NVE, testing with a

larger data set, cross-validation of the results of pattern

classification, and comparative analysis with other re-

lated reports. More advanced work may include the use

of the proposed procedure incorporating detection of the

optic disk and identification of NVD and NVE.
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IEEE, Nov. 2015.

[13] A. Daxer, “The fractal geometry of proliferative diabetic retinopa-
thy: implications for the diagnosis and the process of retinal
vasculogenesis,” Current Eye Research, vol. 12, no. 12, pp. 1103–
1109, 1993.

[14] J. Lee, B. C. Y. Zee, and Q. Li, “Detection of neovascularization
based on fractal and texture analysis with interaction effects in
diabetic retinopathy,” PLoS ONE, vol. 8, no. 12, p. e75699, Dec.
2013.

[15] M. U. Akram, A. Tariq, and S. Khan, “Detection of neovascu-
larization for screening of proliferative diabetic retinopathy,” in
Image Analysis and Recognition, ser. Lecture Notes in Computer
Science, A. Campilho and M. Kamel, Eds. Springer, 2012, vol.
7325, pp. 372–379.

[16] F. Oloumi, R. M. Rangayyan, P. Casti, and A. L. Ells, “Computer-
aided diagnosis of plus disease via measurement of vessel thick-
ness in retinal fundus images of preterm infants,” Computers in

Biology and Medicine, vol. 66, pp. 316–329, 2015.

[17] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener,
C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton,
and J.-C. Klein, “Feedback on a publicly distributed image
database: The MESSIDOR database,” Image Analysis & Stereol-

ogy, vol. 33, no. 3, pp. 231–234, 2014.

[18] A. K. Jain, Fundamentals of Digital Image Processing. Prentice
Hall Information and System Sciences Series, 1989.

[19] A. V. Oppenheim, R. W. Schafer, M. T. Yoder, and W. T. Padgett,
Discrete Time Signal Processing, 3rd ed. Prentice-Hall, Inc.,
2009.

[20] R. M. Rangayyan, Biomedical Image Analysis. CRC Press, 2005.

[21] N. A. Dodgson, “Quadratic interpolation for image resampling,”

2016 24th European Signal Processing Conference (EUSIPCO)

2043



IEEE Transactions on Image Processing, vol. 6, no. 9, pp. 1322–
1326, 1997.

[22] G. Casella and R. L. Berger, Statistical Inference, 2nd ed.
Duxbury Advanced Series, 2002.

[23] R. Herbrich, Learning Kernel Classifiers: Theory and Algorithms.
MIT Press, 2001.

[24] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.

John Wiley & Sons, Inc., 1997.
[25] R. M. Rangayyan, X. Zhu, F. J. Ayres, and A. L. Ells, “Detection

of the optic nerve head in fundus images of the retina with Gabor
filters and phase portrait analysis,” Journal of Digital Imaging,
vol. 23, no. 4, pp. 438–453, Aug. 2010.

2016 24th European Signal Processing Conference (EUSIPCO)

2044


