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Abstract—TIn this paper a variant of the binary Support Vector
Machine classifier that exploits intrinsic and penalty graphs in
its optimization problem is proposed. We show that the proposed
approach is equivalent to a two-step process where the data is
firstly mapped to an optimal discriminant space of the input
space and, subsequently, the original SVM classifier is applied.
Our approach exploits the underlying data distribution in a
discriminant space in order to enhance SVMs generalization
ability. We also extend this idea to the Least Squares SVM
classifier, where the adoption of the intrinsic and penalty graphs
acts as a regularizer incorporating discriminant information
in the overall solution. Experiments on standard and recently
introduced datasets verify our analysis since, in the cases where
the classes forming the problem are not well discriminated in
the original feature space, the exploitation of both intrinsic and
penalty graphs enhances performance.

I. INTRODUCTION

Support Vector Machines (SVM) [1], [2] have been found
to be one of the most popular classification methods since
its invention. Thanks to their solid theoretical foundation
and flexibility, they have been successfully applied in numer-
ous pattern recognition problems, including computer vision
tasks, such as isolated handwritten digit, object and activity
recognition [3], [4]. The fundamental idea forming the basis
of SVMs is the determination of the separating hyperplane
that allows maximum margin-based discrimination between
classes. Hence, they are often referred to as maximum-margin
classifiers. One of their most significant properties originates
from the fact that SVMs use structural risk minimization
(SRM) contrary to empirical/actual risk minimization [5]. This
property ensures that the solution is unique under certain
conditions.

Given the classification task, one can formulate a quadratic
convex optimization problem which can be optimally solved.
Although standard SVM is formulated for linear classification
tasks, it can be easily transformed to solve nonlinear ones
as well. This is achieved by using the “kernel trick” that
is used to project the samples from the original space to a
feature space of higher (even infinite) dimensions (usually
called kernel space), where the classes are likely to become
linearly separable and, thus, the classification problem can be
solved by applying linear SVM in that space [1].

It is evident that the success of SVM-based classification
is closely related to the feature space in which the method
is applied. This is why a line of work in SVM-based classi-
fication attempts to formulate suitable optimization problems
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that combine maximum margin-based discrimination with ge-
ometric properties of the original feature space [6], [7], [8],
[9], [10] or pairwise relationships between the training data
[11]. All these methods exploit either global data geometric
information (described by using the total scatter matrix) or
class geometric information (described by using either the
within-class scatter matrix or intrinsic class graph structures).
Analyzing the optimization problems proposed till today, it
can be seen that they can be interpreted as a two-step process:
a) the input data are mapped to a new feature space that is
determined by using intrinsic (class) geometric information.
This process can be seen as a “whitening” or dimension scaling
process that is used to map the data from the input space
to a feature space where all classes have similar covariance
structures. b) Application of the original SVM optimization
problem on the projected data.

Based on this observation, in this paper we are trying to
answer the question: “Would the exploitation of discriminant
information in the first step of the above-described process
be beneficial in terms of performance?”. In order to answer
this question, we formulate a new optimization problem for
maximum margin-based classification that exploits both in-
trinsic and penalty graphs. We show that by doing so, indeed,
the optimization problem to be solved can be interpreted as
a two-step process where one determines an optimal dis-
criminant (sub-)space, in terms of Graph Embedding-based
discriminant subspace learning [12], and subsequently applies
standard SVM-based classification in the transformed space. In
addition, we extend this idea in LS-SVM-based classification,
where we show that the adopted discriminant term plays the
role of a regularizer. This regularizer expresses discrimination
criteria, which can vary depending on the intrinsic and penalty
graphs exploited. Quantitative and qualitative comparisons
between the proposed approach and existing ones are provided
and discussed.

The remainder of the paper is structured as follows. Related
methods proposed till today for the exploitation of intrinsic
graph structures in the SVM optimization problem are de-
scribed in Section II. The proposed method incorporating dis-
crimination criteria described by exploiting both intrinsic and
penalty graphs in the SVM optimization problem is described
in Section III. This idea is further extended by using a Least
Squares SVM formulation in subsection III-B. Experiments
comparing the performance of the proposed methods with
related ones are provided in Section IV and conclusions are
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drawn in Section V.

II. RELATED WORK

Let us denote by x; € RP i =1,..., N the set of training
vectors that we would like to employ in order to train a
maximum margin classifier. Let us also define the binary labels

€ {—1, 1} determining whether the vectors x; belong to the
positive or negative class of the binary classification problem
at hand. In SVM, the optimal separating hyperplane is the
one that separates the two classes with maximum margin. The
SVM optimization problem is defined as:

N

1
mzl? —wW Sw—i-c;f“ 1)

subject to the constraints:

yz(WTXz+b)21—§z> §7,207 Z:177N7 (2)

where w € RP is the vector defining the separating hy-
perplane, b determines the offset of the hyperplane from the
origin, &;, ¢« = 1,..., N are the so-called slack variables and
¢ > 0 is a regularization parameter denoting the importance
of the training error in the optimization problem. The solution
of the above-described optimization problem is a quadratic
convex optimization problem of the form:

maz ZZaiajylny S™ x +Zal, 3)

=1 j=1

subject to the constraint 0 < a; < c,i=1,...,N.a € RV is
a vector containing the Lagrange multipliers «;, 2 = 1,..., V.

In (1), S € R¥*N is a matrix that defines properties
of the feature space in which classification is applied. We
can employ S in order to define a “whitening” or dimension
scaling process that is used to scale the input space R” by
applying X; = S~2x;. One can also find a mapping of the data
to a lower-dimensional feature space by finding the elgenvalue
decomposition of S = UX U7 and applying X; = 52Uk,
where ¥ = 3(1:d,1: d) is a diagonal matrix containing
d < D eigenvalues and U = U(;,1 : d) is a matrix formed
by the corresponding eigenvectors.

Depending on the choice of the matrix S, the following

SVM variants have been proposed:

« Identity matrix: In this case, the original SVM classifier
is applied in the original feature space R” [2].

e Within-class scatter matrix: In this case, the Minimum
Class Variance SVM (MCVSVM) classifier proposed in
[6] is applied.

o Subclass within-class scatter matrix: In this case the
Minimum Subclass Variance SVM (MSVSVM) classifier
proposed in [9] is applied.

o Scatter matrix defined on an intrinsic graph structure by
S = XLX7, where X = [x1,...,xy] and L is the graph
Laplacian matrix defined so as to describe properties of
the data that are subject to minimization: In this case the
Graph Embedded SVM (GESVM) classifier proposed in
[11] is applied. We should note here that the within class

and the within subclass scatter matrices used in [6] and

[9] can also been expressed by using specific types of

Laplacian matrices and, thus, the methods in [6] and [9]

can be considered to be special cases of GESVM in [11].
A. Least Squares SVM

Least Squares SVM is a regression model solving the
following optimization problem [19]:

N
I 2
TI’“LI?:ZL §W W+Cilf¢7 4)

subject to the constraints:
wlix;+b=vy; —&, i=1,...,N. (5)

By calculating the saddle point of the optimization criterion
with respect to both b and w, we obtain:

— oy 1B ©)
—1
- (XXT + 11) X(y —01), (7

where y = [y1,...,yn]|T, 1 € R is a vector of ones, B =
X7 (XXT + 1) 7' X,

B. Graph Embedding

The Graph Embedding (GE) framework [12] assumes that
the training data x;, ¢ = 1,..., N are employed in order
to form the vertex set of an undirected weighted graph
G = {X,V}, where V € RV*¥ ig a similarity matrix whose
elements denote the relationships between the graph vertices
x;. A penalty graph G? = {X, V?} can also be defined, whose
weight matrix V7 € RY*N penalizes specific relationships
between the graph vertices x;.

A linear transformation s; = w’x; is obtained by optimiz-
ing for:
N
w* o= min g (whx; —wl'x;)%V;
wIXCXTw=c *“ :
1,7=1
= argmin  wl XLXTw, ()

wTXCXTw=c

where L € RV*N is the graph Laplacian matrix defined as
L = D — V, D being the diagonal degree matrix having
elements D;; = Z;V:1 V;j. C € RV*N is the graph Laplacian
matrix of GP, that is C = LP = DP — VP. In the case
where no penalty criteria are taken into account, C can be set
equal to a constraint matrix, e.g. a diagonal matrix for scale
normalization, that is used in order to avoid trivial solutions.

The solution of (8) is obtained by solving the generalized
eigenvalue decomposition problem S;v = AS,v, where S; =
XLXT is a matrix expressing the data relationships that are
subject to minimization and S, = XCXT is a matrix express-
ing the data relationships that are subject to maximization.
That is, w is the leading eigenvector of the matrix S = S;lsi.
In the case where the matrix S, is singular, a regularized
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version is exploited, i.e. gp = S, + 71, and eigenanalysis is
performed to the matrix S = g; 1S;. r is a parameter that is
used in order to exploit the dominant diagonal property of non-
singular matrices. Within the Graph Embedding framework,
several Discriminant Learning techniques can be described e.g.
[13], [14], while it has also been exploited in classification
schemes [15], [16], [17], [18].

III. PROPOSED METHODS

From the above, it can be seen that the matrix S = g; 1S,
can be employed in order to describe both intrinsic and penalty
relationships between the training data. We shall employ this
matrix in order to embed discriminant information in max-
imum margin classification in Subsection III-A. In addition,
we will use it in order to properly regularize the solution of
LS-SVM classifier in Subsection III-B. Qualitative comparison
of the proposed methods with the related ones and nonlinear
extensions are provided in Subsection III-C.

A. Proposed Graph Embedded SVM

The proposed maximum margin classifier solves the follow-
ing optimization problem:

I o
ngz v Sw-l—cz&, )

i=1

subject to the constraints:

yiwlix; +b)>1-¢&, &>0, i=1,...,N. (10)
The Lagrangian of (9) with the constraints in (10) is:
1 N N
_ TQ L £
L= gw Sw+c§& ;M
N
— > aly(wxi+b) -1+ &), (11
i=1

By determining the saddle points of £ with respect to w, b
and &;, we obtain:

N
0 -
—ﬁ =0 = Sw= Zaiyixi,

Ow 12)
N
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%_0 = Zaiyi—o, (13)

oL

aigt—o = c—ai—Bi—O. (14)

By substituting (12), (13) and (14) in (11), the solution is ob-
tained by solving the following quadratic convex optimization
problem:

mazx ZZaiaJylij S- xJ —1—204“ (15)
=1 j=1
subject to the constraint 0 < o; < ¢, i =1,...,N.

By observing (15), it can be seen that the solution of
the proposed classifier can be obtained by applying standard

SVM classification on a transformed feature space. That
is, it is equlvalent to the application of standard SVM on
X; = U7 X;, where 3 and U are matrices containing the
d < D smallest eigenvalues of S and the corresponding eigen-
vectors of S. From the discussion in Subsection II-B, it can
be easily seen that the first step of the proposed classification
scheme is equivalent to Graph Embedding-based discriminant
learning. By exploiting different intrinsic and penalty graphs,
described in S; and S, respectively, the proposed classifier
inherently exploits data (or class) relationships for maximum
margin-based classification.
In order to exploit optimized SVM implementations [23],
we can also exploit the equivalence of the proposed classifier
with the following two-step classification scheme:
e Graph Embedding-based data prOJectlon Discriminant
data representation learning, i.e. X; = 372 UTxZ, where
S and U are matrices containing the d < D smallest
eigenvalues and the corresponding eigenvectors of S.

o Standard SVM-based classification of discriminant data
representations X;.

B. Proposed Graph Embedded LS-SVM

In order to incorporate discriminant information described
in both intrinsic and penalty graphs in LS-SVM-based classi-
fication, we formulate the following optimization problem:

mz;}z §W SW—I—CZ;@, (16)
subject to the constraints:
wlixi+b=y;—&, i=1,...,N. (17)

Similarly to the SVM case described in Subsection III-A,
the Lagrangian of (16) is given by:

N
1 e
Lrs—svm = §WTSW+C;§'2

N

- Z[WTXi +b—yi + &l

i=1

(18)

The solution of the proposed LS-SVM classifier exploiting dis-
criminant information described in both intrinsic and penalty
graphs is obtained by determining the saddle points of the
Lagrangian function £1s_ sy with respect to w and b. By
doing so, we obtain:

1

— B 1
N +17B1 (19)

y'(I-B)1

—1
w = (XXT + ié) X(y —b1), (20)

-1
where B = XTATX and A = (XX + 1§

By comparing (6), (7) with (19) and (20), it can be seen
that the exploitation of the intrinsic and penalty graphs in
LS-SVM classification has an effect of regularization in the
derived solution. This regularizer expresses both intrinsic and
penalty data relationships.
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TABLE II
PERFORMANCE (%) OF METHODS FOLLOWING THE SVM FORMULATION.
Dataset KNN-Li | KNN-LiLp | LDA-Li | LDA-LiLp | CDA-Li | CDA-LiLp
Liver 57.62 58.26 57.27 67.42 57.33 67.42
Transfusion 76.18 76.20 76.18 76.20 76.18 76.20
Webcam (fc7) 86.26 86.41 86.41 86.81 86.49 86.57
Webcam (fc8) 82.88 83.95 83.57 83.72 83.25 83.65
DSLR (fc8) 88.17 88.28 88.06 89.15 88.07 89.34
DSLR+Webcam (SURF) 79.07 83.40 77.75 81.23 80.53 80.40
TABLE III
PERFORMANCE (%) OF METHODS FOLLOWING THE LS-SVM FORMULATION.
Dataset KNN-Li | KNN-LiLp | LDA-Li | LDA-LiLp | CDA-Li | CDA-LiLp
Liver 66.49 66.78 67.01 66.03 65.85 66.9
Transfusion 77.46 77.22 77.27 77.27 77.27 77.33
Webcam (fc7) 80.32 80.63 80.47 80.55 80.47 80.32
Webcam (fc8) 80.17 80.49 80.17 80.41 80.02 80.25
DSLR (fc8) 82.51 83.16 82.83 83.05 82.17 82.95
DSLR+Webcam (SURF) 87.12 87.26 87.30 87.44 87.31 87.13

TABLE I
DATASETS USED IN OUR EXPERIMENTS.

Dataset Source #Samples D #Classes
Liver UCI [20] 345 6 2
Transfusion UCI [20] 768 8 2
Webcam (fc7) DA [21] 259 4096 (8PCA) 11
‘Webcam (fc8) DA [21] 259 1000 (7PCA) 11
DSLR (fc8) DA [21] 186 1000 (7PCA) 10
DSLR+Webcam (SURF) DA [21] 452 800 (45PCA) 10

C. Discussion

Here, we provide a qualitative comparison between the pro-
posed method with the related methods described in Section
IT and we show that these methods can be considered to be
special cases of the proposed one. In addition, we show that
the proposed method can be easily extended to handle non-
linear classification problems.

By comparing the solutions obtained for the previous meth-
ods (3) and the proposed one (15), we can see that the main
difference lies on the use of a different pre-processing matrix
SandS, respectively. Having in mind that both approaches are
equivalent to a two-step classification process, where the first
one is a preprocessing step, it is expected that the adoption of
both intrinsic and penalty graphs will lead to a more discrimi-
nant feature space for data projection and classification, while
(as has been already explained in Section II) the use of only
an intrinsic graph has the effect of whitening, which might
not increase the discrimination ability of the obtained feature
space. Moreover, the methods described in Section II can be
considered as a special case of the proposed approach (i.e.
by using the trivial graph structure described by the matrix
S, =D.

The proposed methods can be extended to non-linear ones
by exploiting the representer theorem [1], [22], stating that

the solution can be expressed as a linear combination of the
training data when represented in the kernel space, i.e. w =
P, where ® = [p(x1),...,0(xn)] and ¢(-) is the so-called
kernel function mapping the data from the input space to the
kernel space.

IV. EXPERIMENTS

In this Section, we provide experiments conducted in order
to compare the performance of the proposed methods with
other, related, ones. We have employed 5 publicly available
datasets to this end. Information regarding the datasets used
is provided in Table I. On each dataset, we conducted five
experiments. On each experiments we applied the 5-fold cross-
validation process. On each fold, the optimal parameter values
for each algorithm have been determined by applying 5-
fold cross-validation on the data forming the training set and
performance was measured on the test set (remaining fold).
In multi-class classification problems, we followed the One-
Versus-Rest approach, where multiple (equal to the number of
classes) binary classifiers are learned to discriminate a class
from the rest ones and the binary classification results are
combined using a probabilistic approach [23].

Experimental results obtained by applying the SVM and the
LS-SVM-based classification models are provided in Tables II
and III, respectively. In these Tables, the graph types used for
each method are provided, i.e., we have used the LDA [6],
[7], CDA [9] and GE [11]. The cases where only the intrinsic
graph is employed in the optimization problem are denoted
by Li, while the cases where both the intrinsic and penalty
graphs are employed in the optimization problem are denoted
by LiLp. As can be seen, the exploitation of both intrinsic and
penalty graphs has the potential of enhancing performance.
While this enhancement might be small in some problems, it
can be considerably big in some others. For instance, we can
observe a big enhancement in performance on the Liver and
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DSLR datasets in the cases where the LDA and CDA graphs
are used.

V. CONCLUSIONS

In this paper, we proposed a variation of the binary Sup-
port Vector Machine (SVM) classifier that exploits intrinsic
and penalty graphs in its optimization problem. We showed
that the proposed method can be considered as a two-step
process, where the first processing step defines an optimal
data projection to a feature space of increased discrimination
power, while the second one corresponds to the application of
standard SVM classification. We showed that existing methods
are special cases of the proposed approach. Moreover, we
have employed the proposed approach for LS-SVM-based
classification. When compared to existing related approaches,
the proposed methods have shown to compare favourably in
publicly available classification problems.
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