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ABSTRACT

In this paper, we propose a new unsupervised method to de-
tect anomalous time series, given as little as one test data set.
Particularly, the method proposed consists in an iterative pro-
cedure with two alternating steps: a dictionary learning (DL)
step, to learn a pattern for the “normal” time series, and a
modified One-class Support Vector Machines (OCSVM) clas-
sifier, which finds the anomalies by taking into account how
much each time series deviates from the pattern found. The
algorithm that arises from the original combination of these
two steps represents a general framework, where any DL al-
gorithm can be plugged in according to the model desired.
When tested on two different applications (detection of shape
anomalies and analysis of cardiac MRI time series), our pro-
posed method is shown to outperform other unsupervised ap-
proaches, presenting higher detection accuracy.

Index Terms— Anomaly detection, Dictionary Learning,
Support Vector Machines

1. INTRODUCTION

Anomaly detection, in machine learning or in the Knowledge
discovery in databases (KDD) field, refers to the problem of
finding patterns in data that do not conform to an expected
model [1, 2]. This problem finds a direct application in a va-
riety of domains, e.g. health-care, fraud detection, intrusion
detection, etc., where an anomaly is considered a highly crit-
ical event that has not been observed in the data. In many of
these applications, data is collected in the form of time series.
Two typical cases are then observable: we can have process
anomalies, if the whole time series deviates from a typical
pattern, or subsequence anomalies, when the abnormal events
occur in specific time frames.

Traditional approaches to time series anomaly detection
follow a supervised scheme: a database of annotated time se-
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ries is available, and classification-based or nearest-neighbor-
based techniques are generally employed. We are instead
interested in an unsupervised approach, where anomalies
are detected having available as little as a single test data
set. To this end, we propose a new method to detect pro-
cess anomalies, which is fully unsupervised and requires no
prior knowledge on the number and type of anomalies. Our
only assumption is that most of the time series (the “normal”
ones) conform with a dictionary-based sparse decomposition
model (Y ≈ DX), whereas a little fraction of them signif-
icantly deviates from this model. The same assumption is
made in [3], where the authors develop a method for anomaly
detection with an ad-hoc sparse coding. Unlike [3], where
the dictionary D is assumed known, however, we perform
dictionary learning (DL) in the presence of outliers, i.e. the
model is trained directly from the given data set. As a second
step, then, a modified One-class Support Vector Machines
(OCSVM) classification is performed, to partition the data
set into normal and anomalous time series. OCSVM is a
state-of-the-art SVM-like classifier [4–6], which aims at find-
ing the boundaries to separate data points related to a single
dominant class from the rest of the data points, considered as
outliers. We propose a modification to the original OCSVM
classifier [4], which penalizes each data point according to
the related representation error originated from the DL step.

The contributions of this paper are then twofold: (i) the
modification proposed on the OCSVM algorithm, and (ii) the
whole scheme presented, which represents a new framework
for unsupervised anomaly detection in combining DL and
OCSVM as alternating steps of an iterative procedure. The
method can be referred to as a dictionary-decomposition-
based One-class SVM. The first step of the proposed method
(DL) can be customized according to a specific sparse decom-
position model chosen; independently of the choice made, the
modified OCSVM will take benefit of the dictionary-based
decomposition made to better identify the anomalies.

The rest of the paper is organized as follows. In Section
2, our modification to the OCSVM algorithm (first contribu-
tion) is outlined. Then, in Section 3, the whole method is pre-
sented (second contribution), by detailing the procedure fol-
lowed. Before drawing conclusions, Section 4 presents some
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experimental results on two distinct applications.

2. ONE-CLASS SUPPORT VECTOR MACHINES
(OCSVM)

A One-class Support Vector Machines (OCSVM) classifier is
a machine learning technique that aims at describing a unique
“normal” class of data points by learning a compact model
such that as many as possible data points are included. The
two models usually considered are hyperplanes [4] and hy-
perspheres [5], which eventually lead to an equivalent for-
mulation. In the former case, the goal is to learn a decision
boundary (a hyperplane) that achieves the maximum separa-
tion between the points and the origin. When training and
testing an OCSVM model on the same data set, we actually
perform outlier/anomaly detection.

Like traditional SVMs algorithms, OCSVM uses an im-
plicit transformation function φ(·) to project the data onto a
higher-dimensional kernel space. In this space, the function
that defines the decision boundary is the following:

g(y) = ωTφ(y)− ρ , (1)

where ω is the vector perpendicular to the decision bound-
ary and ρ is the bias term. The classification of a particular
data point ŷ is given by the sign of the function g(ŷ). The
vector ω and the bias ρ are found by solving the well-known
optimization operation:

min
ω,ρ,ξ

‖ω‖2

2
− ρ+ 1

νN

N∑
i=1

ξi

s.t. ωTφ(yi) ≥ ρ− ξi , ξi ≥ 0

, (2)

where ξi is the slack variable related to the data point yi that
plays as a margin for it to lie on the other side of the decision
boundary, and ν is a regularization parameter.

2.1. Modified OCSVM

As other methods that introduce modifications to the OCSVM
classifier [7, 8], we propose to change the role of the slack
variables ξ. In particular, we want to assign a larger or smaller
margin to each data point according to how bad or well, re-
spectively, it is represented by a dictionary-based sparse de-
composition model, which is supposed to characterize the
normal class. In other words, we want data points with a large
reconstruction error to be assigned a large slack variable that
allows them to be outliers.

Given the generic dictionary-based sparse model [9]

min
D,X
‖Y −DX‖22 s.t. ‖xi‖0 ≤ L , (3)

where we can possibly have other constraints on the sparse
representation coefficients or the dictionary atoms to design,

a measure of the reconstruction quality of a particular data
point yi can be defined as:

ri = ‖yi −Dxi‖2 . (4)

As easily provable, the metric in Equation (4), which is
the Euclidean distance between a data point and its projection
onto the dictionary subspace (which is, in turn, a point that
approximately lies within the normal class), reported in the
kernel space, can be expressed as follow:

di = 2(C − φ(yi) · φ(Dxi)) , (5)

where C is a constant measuring the product in the kernel
space between a data point and itself.

The distances {di} can now be used in the optimization
function as a direct expression of the slack variables. The
original OCSVM objective becomes than the following:

min
ω,ρ

‖ω‖2

2
− ρ s.t. ωTφ(yi) ≥ ρ− λdi , (6)

where λ is a regularization parameter that weights each dis-
tance to provide the actual margin.

3. PROPOSED METHOD:
DICTIONARY-DECOMPOSITION-BASED

ONE-CLASS SVM

In Section 2 we proposed a modified OCSVM classifier,
which, under the assumption that a dictionary-based sparse
decomposition model fits better the normal data points, uses
the obtained reconstruction errors to guide the construc-
tion of the decision boundary, in a similar way as in [10] a
“sparse construction cost” is used for the detection of abnor-
mal events.

The whole procedure consists then of two steps:
• A dictionary learning (DL) algorithm, to learn a sparse

decomposition model aiming at characterizing the normal
class; and

• Our modified OCSVM classifier, proposed in Section 2, to
detect the anomalies by tracing the boundary of the nor-
mal class.

The two steps are alternated in an iterative fashion: at each
iteration, DL is performed only on the supposedly normal data
points (given the classification at the previous iteration); with
a possibly better learned pattern, the following classification
is refined. The workflow of the whole method is depicted in
Fig. 1.

The label vector is initialized with all ones (1 means
“normal”, -1 means “anomaly”), i.e., at the first run of the
DL algorithm, all time series are considered normal. At the
next iterations, the label vector changes, possibly converg-
ing towards the optimal solution, thus improving the pattern
discovery step via DL. Details of each step of the proposed
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Fig. 1. Workflow of the the proposed method.

method, consisting in a dictionary-decomposition-based one-
class SVM (for brevity, the acronym “DOCS” is used), are
reported in Algorithm 1.

It is important to note that in the DL step non overcom-
plete dictionary models are preferable. In fact, we want to
have a compact model as large as necessary to represent well
the normal class, without taking the risk to also accommodate
for the anomalies.

4. EXPERIMENTAL RESULTS

In this section, we test the proposed method for time series
anomaly detection with two applications: detection of shape
anomalies (Section 4.1), and ischemia detection using CP–
BOLD time series (Section 4.2). In both cases, we define
the dictionary-based decomposition model used, and compute
the performance of our method in terms of detection accuracy
w.r.t. other state-of-the-art approaches.

4.1. Application 1: shape anomaly detection

For the detection of shape anomalies, given an object, a shape
1-D sequence can be extracted by moving along the contour
of the object and registering the distance of the current point
to the image center (Fig. 2) [11].

For this problem, we considered two different data sets:
Diatoms and MixedBag1. The two data sets are composed
by several classes of shapes. An anomaly detection test can
then be set up by taking all instances from one particular class
and add random anomalies coming from other classes. Fig.
3 shows two examples of 1-D sequences for two different
classes of the MixedBag data set.

As we can see in Fig. 3, 1-D sequences related to shapes
are typically characterized by a single underlying pattern with

1The data sets can be downloaded at the URL http://www.cs.ucr.
edu/˜eamonn/shape/shape.htm.

Algorithm 1 Details of the Dictionary-decomposition-based
One-class SVM (DOCS) method.

1: procedure DOCS(Y )
2: Initialization of the labels:

li = 1 ∀i = 1, . . . N

3: Dictionary Learning algorithm:

min
D,X
‖Yli=1 −DX‖22 s.t. ‖xi‖0 ≤ L

4: Compute distances in the Kernel space:

di = 2(−φ(yi) · φ(Dxi))

5: Solve the modified One-class SVM:

min
ω,ρ

‖ω‖2

2
− ρ s.t. ωTφ(yi) ≥ ρ− λdi

6: Determine the labels:

li = sgn(ωTφ(yi)− ρ)

7: If num. max iterations not reached go to Step 3.
8: return l . Output labels
9: end procedure

possible shifts. To learn a representation of them that is invari-
ant to shifts, we decide to adopt the shift-invariant dictionary
learning algorithm of Rusu et al. [12]. The algorithm aims
at learning the circulant dictionary than can best represent
a given input data matrix (each input data vector is seen as
a weighted version of the shifting pattern with a strict uni-
tary `0-sparsity constraint). In addition, we propose to add
a non-negative constraint for the sparse coefficient vectors.
This drives to the learning of a pattern with no sign ambigu-
ity (otherwise, a time series, although maybe behaving very
differently than the pattern, could still be assigned a large co-
efficient).

min
C,X
‖Yli=1 −CX‖22 s.t. ‖xi‖0 = 1 , 1Txi ≥ 0 (7)

Our proposed method is compared with regular One-class
SVM (OCSVM) [4], where we choose the optimal value of
ν by cross-correlation and perform the classifier directly on
the raw 1-D sequences, and with OCSVM performed in the
frequency domain, i.e. on the magnitude vector of the FFT
coefficients (this in order to correct for shifts in the data). Re-
sults for several runs, across all classes (at each time, one class
plays as the dominant one), and for two different percentage
of anomalies (10% and 20%), are reported in Table 1.

As we can observe from the table, our method turns out
to be the best performing in 5 cases out of 6, presenting the
highest detection accuracy.
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10% anomalies 20% anomalies

Dataset OCSVM FD-OCSVM Proposed OCSVM FD-OCSVM Proposed
Diatoms 89.1% 89.1% 90.8% 83.5% 83.9% 82.5%
MixedBag 74.9% 86.4% 91.4% 78.1% 80.9% 82.2%

Table 1. Performance results in terms of detection accuracy of the proposed method w.r.t. simple One-class SVM (OCSVM)
and OCSVM in the frequency domain.

Fig. 2. Generation process of a 1-D sequence from a shape:
moving along the contour of the image, the distance to the
image center is encoded.

4.2. Application 2: ischemia detection with CP–BOLD
time series –a study on synthetic data

As another application, we consider Cardiac Phase-resolved
Blood Oxygen Level-Dependent (CP–BOLD) Magnetic Res-
onance Imaging (MRI), which is a current state-of-the-art
imaging technique that examines changes in myocardial oxy-
genation without the use of contrast media and pharmaco-
logical stress agents. Signal intensity, i.e. pixel intensity
values in the images acquired, can be locally averaged to
analyze specific patterns occurring in a given region of the
myocardium: by taking local averages across time we can
then extract time series. If we look at the time series related
to a patient affected by ischemia (Fig. 4), we can notice that
some of them roughly follow a specific pattern (by presenting
mutual shifts), whereas others appear more irregular: the for-
mer correspond to myocardial territories remote to ischemia,
while the latter relate to the ischemic area [13]. Since under
the hypothesis of single-vessel disease the remote time series
are larger in number, we can then use an anomaly detection
algorithm, as the proposed method, to detect ischemia.

To test unsupervised ischemia detection algorithms, we
used the CP–BOLD time series simulator described in [14],
by setting different numbers of myocardial segments (N ) and
different values of “ischemic extent” (IE), which is the equiv-
alent to the percentage of anomalies. A comparison of the
proposed algorithm with One-class SVM and Independent
Component Analysis (ICA) is reported in Table 2.

In this case, our method outperforms in every test the two

Fig. 3. Examples of 1-D sequences and original shape images
for two classes of the MixedBag data set.

N=150 N=50

IE ICA OCSVM Proposed ICA OCSVM Proposed
40% 92±6 89±1 98±1 79±6 87±1 89±5
33% 87±6 82±1 97±2 84±6 79±2 88±8
25% 87±5 74±1 97±2 85±7 72±1 93±5

Table 2. Accuracy (mean ± std) in % of ICA, OCSVM, and
proposed method, with variable N and IE.

other state-of-the-art approaches considered, showing a con-
siderably improved ischemia detection accuracy.

In the tests made, an optimal empirical formula for
the regularization parameter is found via grid search as
λ = 1/(2M), where M is the dimension of the data vec-
tors. The maximum number of iterations is instead set to 10;
however, the algorithm possibly stops before when the same
vector of labels is produced for two consecutive runs. E.g.,
in the case of Application 1, it is observed that the algorithm
converges after 3.3 iterations (on average).

5. CONCLUSION

In this paper, we presented a new method to detect anoma-
lous time series in an unsupervised fashion, given a single
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Fig. 4. Examples of CP–BOLD time series extracted from a
subject .

data set and no prior knowledge. The method consists in a
dictionary-decomposition-based One-class SVM: it relies on
a dictionary (DL) step, which aims at learning a model for the
normal time series, and a proposed ad-hoc One-class SVM
classifier, which detects the anomalous ones. The proposed
method iterates the two steps in a way that they can take ad-
vantage of each other, and it is flexible in the sense that any
DL algorithm can be used as for the first step. When com-
paring our method with other state-of-the-art approaches, it
is shown to reach higher averages in detection accuracy. The
method presented is expected to be useful in several other ap-
plications beyond those ones discussed in the paper, where
anomalies in time series data are to be detected, e.g. leaf
detection and analysis for plant phenotyping and trajectory
analysis in transportation.
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