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ABSTRACT
In this paper, a distributed, set-theoretic based subspace track-
ing scheme is presented. In particular, each one of the agents
in the network has access to a subset of data, which are not
allowed to be shared among them. Moreover, the data vec-
tors lie on a low–rank linear subspace, which is unknown and
it might also be time-varying. The agents aim at estimating
and tracking the unknown subspace using solely their own
data and the tentative subspace estimates of their neighbours.
Moreover, some of the the data might be corrupted with out-
lier noise. Method is evaluated in a synthetic simulation ex-
ample, where the unknown subspace exhibits abrupt changes.

Index Terms— Distributed online learning, Robust Sub-
space Tracking, APSM.

1. INTRODUCTION

The volume of data captured worldwide is growing at an ex-
ponential rate posing certain challenges regarding their pro-
cessing and analysis. Moreover, taking into account that the
available data exhibit an increased complexity (new types of
data emerge) and they are also involved in advanced archi-
tectures according to the Internet of Things [1] paradigm, it
is clear that further advances in already established machine
learning techniques are required in order to cope with the new
challenges.

Even though data tend to live in high dimensional spaces,
they often exhibit a high degree of redundancy; that is, their
useful information can be represented using a number of at-
tributes much lower compared to their original dimensional-
ity. This is a key attribute, which allows the efficient analysis
and processing of such data, provided that the low dimen-
sional subspace, which they lie on, has been estimated accu-
rately enough. The most common tool for subspace estima-
tion, dimensionality reduction and data analysis is the cele-
brated Principal Component Analysis (PCA). This technique,
especially when dealing with high dimensional data, has a
number of drawbacks mostly related to the fact that it operates
in a batch mode. More specifically, all the available data has
to be stored leading to increased memory requirements and
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high computational load. On top of that, in big data applica-
tions, the data might not be able to be stored in the first place.
In such cases, the algorithm needs to retrieve them from slow
memory devices such as hard disks or to access them over
a network. This procedure implies excessive delays due to
communication costs. Another disadvantage due to batch op-
eration is that the unknown subspace has to be re–computed
from scratch whenever a new datum becomes available.

Online/sequential processing offers significant benefits
regarding memory requirements and computational complex-
ity compared to the batch mode of operation. Moreover, in
many occasions the subspace is subjected to changes as time
evolves, [2]. In such scenarios, the employed subspace esti-
mation algorithm needs to track the subspace online; i.e, to
update its current estimate based on the data which become
available sequentially, one per time instance. Online Sub-
space Tracking (ST), e.g., [3, 4, 5, 6], plays a central role in
many applications, such as, tracking of moving objects [7],
foreground/background separation [8], beamforming [9], just
to name a few.

In order to tackle potential limitations of processing
power and/or of storage capacity, one may also consider
to split the full data analysis problem into subtasks in order to
distribute it among a number of processing units. This philos-
ophy has been followed in several methods in the framework
of MapReduce/Hadoop [10, 11] involving the fusion of the
subproblem outcomes in a central processor, which need to
communicate with all the subunits. An alternative path is to
resort to fully distributed/decentralized solutions based on
recent advances, which stem from the signal processing and
machine learning communities [12, 13, 14, 15]. The latter
approach offers certain advantages. First, the existence of a
fusion center is avoided and one solely relies on in–network
processing in ad-hoc topologies. This leads to increased reli-
ability and robustness of the network system, because it is not
affected by possible fusion center failures. Overall, besides
the computational and storage ease per processing unit, which
can be attained by distributed processing, another important
attribute is that of privacy. In particular, the processing of
data is performed locally avoiding the need for sensitive in-
formation exchange [16]. Finally, in many ST applications
(see for example [8, 5]) the data set includes outliers; that
is corrupted data that do not adhere to the adopted model.
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For example, when the data are exchanged within nodes in a
wireless sensor network outliers may occur due to malfunc-
tioning nodes. If the presence of outliers is not taken into
consideration, then the performance of the ST algorithms can
be seriously degraded, e.g., [8]. Hence, robustness against
outliers is a matter of paramount importance in subspace
tracking. Outliers are also present in a number of big data
applications.

Recently, an algorithm for robust subspace tracking was
proposed [17]. The presented scheme belongs to the family
of the Adaptive Projected Subgradient Method (APSM) al-
gorithms, e.g., [18, 19, 20, 15]. In this paper, a distributed
version of the aforemention algorithm is presented. Accord-
ing to the APSM rationale, at each node and in any particular
time instance, a loss function is defined around the most re-
cently obtained data vector. This loss function scores a zero
for a non–empty (property) set of points/possible solutions.
All these points are candidate solutions. Such a philosophy is
in line with arguments related to robust statistics costs. The
goal of the method is to find a point (solution), which belongs
to the intersection of all these property sets associated with
the received data.

The nodes of the network cooperate with each other by
exchanging information and fusing it with respect to the
diffusion rationale, adopted in distributed adaptive filtering
task, e.g., [21]. Furthermore, our proposed algorithm iden-
tifies the time instances at which the data contain outlier
noise. In this case, a sparsity–promoting greedy technique,
namely the Compressed Sampling Orthogonal Matching Pur-
suit (CoSAMP), [22], is mobilized to estimate the sparse
outlier vector, and removes it from the data vector (in prin-
ciple any sparsity promoting algorithm can be adopted).
Finally, our algorithm attacks the missing entries scenario, by
employing a technique, which attempts to predict the missing
entries.

Notation: The set of real numbers and the set of non–
negative integers are denoted by R and N respectively. Matri-
ces are denoted by uppercase boldface letters and vectors by
boldface letters. (·)T stands for vector/matrix transposition.
Moreover, ∥ · ∥ stands for the Euclidean norm and ∥ · ∥F for
the Frobenius norm. Finally, the m × r zero matrix and the
m×1 zero vector are denoted by Om×r and 0m respectively.

2. PROBLEM STATEMENT

Consider a collection of agents, which are capable of perform-
ing computations locally. Moreover, each agent has a number
of neighbors; its neighborhood comprises all agents, which it
is connected to and it can exchange information with. Such
a network of agents can be modeled as an undirected graph
G(N , E), where N = {1, . . . ,K} stands for the set of all
the nodes (each node representing an agent) and E is the set
of pairs of nodes, which are neighbors. Of special interest are
the strongly connected networks, in which there exists at least
one (possibly multihop) path connecting every two nodes of
the network. Such a network is illustrated in Fig. 1.

Fig. 1. Illustration of an ad–hoc network.

Each node, k ∈ N , has access to a set of observation
vectors (xk,n),xk,n ∈ Rm, where n denotes successive time
instances, n = 1, . . . , N . The observed vectors are generated
via the following model:

xk,n = U
(n)
∗ wk,n + vk,n + ok,n, ∀n ∈ N (1)

where U
(n)
∗ is an m× r, m > r orthonormal matrix, wk,n ∈

Rr, vk,n ∈ Rm are vectors corresponding to additive noise
and ok,n is either 0m or corresponds to an outlier, i.e., ok,n =
sk,n ∈ Rm. Following a similar rationale as in [8, 5], we
assume that the outlier vectors are sparse, that is, ∥sk,n∥0 ≪
m, where with ∥ · ∥0 we denote the ℓ0 pseudo-norm.

Assume for the moment that matrix U
(n)
∗ remains fixed,

∀n. Then, in the absence of noise and outliers, it is clear that
the observed vectors, xk,n, ∀k, n, lie on the r-dimensional
subspace, which is spanned by the column vectors of matrix
U

(n)
∗ . All the nodes of the network share a common goal;

that of estimating the subspace where the noise–free observa-
tions lie on. In particular, the nodes are requested to estimate
a common matrix Û

(n)
∗ ∈ Rm×r, whose column space is the

unknown subspace. When U
(n)
∗ , changes with time, n, then

the common objective of all nodes is to track these changes
effectively. Even though, each agent has not access to the
whole data set, cooperation among the agents can be ben-
eficial in terms of improved performance. Intuitively, each
node is benefited via cooperating with its neighbours, which
in turn have already been benefited via their cooperation with
their own neighbours. It turns out that in certain applications,
such as distributed sparse regression [14], the solution which
would be obtained coincides to the one reached in the dis-
tributed setting, i.e., solely relying on local measurements and
on in-network processing. The theoretical aspects in the sub-
space tracking scenario, which is studied in this paper, are
much harder to tackle due to the fact that each node aims at
solving a non–convex problem. We are currently working on
a proof regarding consensus in a local minima.

2.1. Projection Approximation Subspace Tracking

Many popular subspace tracking techniques are based on the
Projection Approximation Subspace Tracking (PAST) algo-
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rithm [3]. Let us, for simplicity, switch to the centralized pro-
cessing approach for the moment denoting the observations as
xn rather than xk,n. Motivated by the exponentially weighted
approach, central in the Recursive Least Squares (RLS) algo-
rithm, online processing and tracking abilities are assigned to
the PAST algorithm, which aims at minimizing the following
loss function

J (n)(U) =
n∑

i=1

βn−i∥xi −UUTxi∥2, (2)

0 < β ≤ 1 is the so called forgetting factor, used in
non–stationary environments, where the subspace under-
goes changes. Moreover, a further simplification is adopted
aiming to convexify (2). In particular:

J (n)(U) =

n∑
i=1

βn−i∥xi −Uyi∥2, (3)

where
yi = UT

i−1xi, (4)

i.e., one of the unknown parameter matrices, U , is replaced
by the respective tentative estimates, UT

i−1.
The cost function given in (3) is the exponential Least

Squares criterion, which has been extensively studied in adap-
tive filtering, e.g., [9]. The matrix U

(n)
LS , that minimizes the

cost (3) at time instance n, is given by [3]:

U
(n)
LS = Cxy(n)C

−1
yy (n), (5)

where
Cxy(n) = βCxy(n− 1) + xny

T
n , (6)

and
Cyy(n) = βCyy(n− 1) + yny

T
n . (7)

Having access to the quantities (Cxy(n),Cyy(n))n∈N,
the classical PAST algorithm employs the Recursive Least
Squares (RLS) Method for the estimation of U (n)

LS , by com-
puting efficiently the matrix C−1

yy (n).
3. DISTRIBUTED SUBSPACE TRACKING VIA THE

APSM ALGORITHM

Recently, an algorithm for robust subspace tracking was pro-
posed [17]. This algorithm was built upon the convexifica-
tion rational of PAST in order to formulate a set-theoretic
based estimation scheme in accordance to the family of the
Adaptive Projected Subgradient Method (APSM) algorithms,
e.g., [18, 19, 20]. Moreover, an efficient outlier detection and
cleansing technique was proposed as well. Next, a distributed
extension of this algorithm is presented:

The PAST algorithm computes, at each step, the matrix
U

(n)
LS by solving (5). The LS solution, which is sought via

the time averaged covariance matrices (Cxy(n),Cyy(n)), is
likely to deviate from the true solution, i.e., from the true sub-
space, due to a number of reasons such as: additive noise,

measurement and model inaccuracies, as well as calibration
errors. In order to accommodate such deviations, follow-
ing set theoretic arguments, we seek the unknown subspace
within an “extended” set of possible solutions, which guaran-
tee to include the true one, or at least, to include it with high
probability. To be more specific, given a certain tolerance
ϵ > 0, for each node, we define the following loss function

Θk,n : Rm×r → [0,+∞) :

U 7→ max

{
0,

1

2
∥Cxy(k, n)−UCyy(k, n)∥2F − ϵ

}
,

(8)

where

Cxy(k, n) = βCxy(k, n− 1) + xk,ny
T
k,n, (9)

Cyy(k, n) = βCyy(k, n− 1) + yk,ny
T
k,n. (10)

The quantity yk,n can be estimated, either as in the PAST
algorithm, i.e., (4) or via the pseudo–inverse of the matrix
Uk,n−1, i.e., yk,n = (UT

k,n−1Uk,n−1)
−1UT

k,n−1xk,n. This
latter option has been proposed in [6] and we can confirm,
based on an extensive set of simulations, that it results in en-
hanced performance.

For each one of the loss functions, we consider the corre-
sponding level set, defined as: lev≤0Θk,n := {U ∈ Rm×r :

Θk,n(U) ≤ 0}. Notice that U (n)
LS ∈ lev≤0Θk,n, hence the

level–set at each time instance is an “enlarged” set of candi-
date solutions, since it contains every matrix, which scores a
zero loss, instead of containing a single point, which is the
case in the Least Squares cost in the PAST algorithm.

The proposed algorithm, is based on the set theoretic es-
timation approach; the goal is to compute a point in the in-
tersection of all the previously defined level sets. This can be
effectively achieved via the Adaptive Projected Subgradient
Method formula, e.g., [19, 23, 18, 20], given next:

Ũk,n =


Uk,n−1 − λk,n

Θk,n(Uk,n−1)

∥Θ′
k,n

(Uk,n−1)∥2F
Θ′

k,n(Uk,n−1),

Θ′
k,n(Uk,n−1) ̸= Om×r

Uk,n−1, Θ′
k,n(Uk,n−1) = Om×r

(11)

where Θ′
k,n stands for any subgradient, which belongs to the

subdifferential ∂Θk,n, defined as [24]:

∂Θk,n(U) =



Om×r,
1
2
∥Cxy(k, n)−UCyy(k, n)∥2F < ϵ,

γ(UCyy(k, n)−Cxy)CT
yy(k, n), γ ∈ [0, 1]

1
2
∥Cxy(k, n)−UCyy(k, n)∥2F = ϵ,

(UCyy(k, n)−Cxy)CT
yy(k, n),

1
2
∥Cxy(k, n)−UCyy(k, n)∥2F > ϵ,

(12)
and λk,n ∈ (0, 2).

It should also be stressed that at each time step the APSM
recursion, given in (11), is allowed to be repeated multiple
times (namely M times). Obviously, this increases the com-
plexity of the algorithm, albeit it leads to enhanced conver-
gence speed and tracking agility.
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Our aim, now, is to effectively combine the tentative es-
timates in each node, Ũk,n, ∀k in a way that fuses the lo-
cal information of the neighboring nodes in order to lead to
improved estimates. According to the diffusion distributed
learning rationale [21], this can be achieved via the following
convex combination

Uk,n =
∑
l∈Nk

al,kŨl,n, (13)

where Nk is the neighborhood of node k, i.e., the set of nodes
with which it can exchange information and al,k are combi-
nation coefficients computed via several adequate rule, such
as the Metropolis rule:

al,k =


1

max{|Nk|,|Nl|} , if l ∈ Nk and l ̸= k,

1−
∑

l∈Nk\k al,k, if l = k,

0, otherwise.

Note that al,k > 0, if l ∈ Nk, al,k = 0, if l /∈ Nk and∑
l∈Nk

al,k = 1,∀k ∈ N . Furthermore, it is assumed that
each node is a neighbor of itself, i.e., ak,k > 0, ∀k ∈ N .

It should be stressed that the combination step (13), en-
courages all neighbours to find the same matrix U . This re-
quest, however, might be considered quite restrictive since our
primary goal is not the nodes to estimate the same matrix but
the same subspace. We are currently working towards a mod-
ification of the algorithm proposed here, where this constrain
is relaxed and each node is allowed to estimate a different U
matrix, whereas all these matrices are encouraged to span the
same subspace.
3.1. Robustness against outliers
The algorithm, as it has been proposed up to now, does not
account for outliers, sk,n, that may contaminate the observed
vectors at the nodes. In [17], a two stage approach was pro-
posed. First, a mechanism for deciding whether an outlier is
present or not is employed; this is based on the error resid-
uals ||xk,n − PUn−1xn||2 = ||rk,n||2, where PUx denotes
the projection of x onto the column space of U and rk,n =
xk,n − (UT

k,n−1Uk,n−1)
−1UT

k,n−1xk,n. In particular, a a
threshold need to be set and if it is exceeded by the current
error residual then the presence of an outlier is identified. Sec-
ond, in case of an outlier presence, the CoSaMP, [22], sparsity
promoting algorithm is employed, which provides estimates
of the outlier vectors, ŝk,n. The same method will be used in
the distributed learning scenario discussed here, by applying
it to each node separately and it is not repeated here due to
space limitations. As long as estimates of the outlier vectors
are available, the observed data vectors xk,n can be cleansed
from the outlier’s effects by subtracting ŝk,n from xk,n before
its use for the computation of yk,n and Cxy(k, n).

The steps of the proposed algorithm, which is hereafter
referred to as Distributed Subspace Tracking based on Adap-
tive Projection Subgradient Method (DSTAPSM), are given
in detail in Table 1, where N is the number of data vectors

Table 1.

Distributed Subspace Tracking Adaptive Projected Subgradient Method
Initialization: An m× r random matrix Uk,0, ϵ > 0,
window length q, δ > 0.

FOR n = 1 : N DO
FOR k = 1 : K DO
1: rk,n = xk,n −Uk,n−1(U

T
k,n−1Uk,n−1)

−1UT
k,n−1xk,n

IF ∥rk,n∥2 =: rk,n ≤ δr̄k,n−1

2: ŝk,n = 0m

ELSE
3: Estimate ŝk,n as in [17]
ENDIF
4: yk,n = (UT

k,n−1Uk,n−1)
−1UT

k,n−1(xk,n − ŝk,n)

5: Cxy(k, n) = βCxy(k, n− 1) + (xk,n − ŝk,n)y
T
k,n

6: Cyy(k, n) = βCyy(k, n− 1) + yk,ny
T
k,n

7: Ũk,n =

{
Uk,n−1 − λk,n

Θk,n(Uk,n−1)

∥Θ′
n(Uk,n−1)∥2

F
Θ′

n(Uk,n−1), Θ′
n(Uk,n−1) ̸= Om×r

Uk,n−1, Θ′
n(Uk,n−1) = Om×r

8: q′ = max{0, n− q}, r̄k,n = 1
n−q′

∑n
j=q′ rj

END
FOR k = 1 : K DO
9: Uk,n =

∑
l∈Nk

ak,lŨl,n

END
END

per node. Note that the threshold, rk,n, which determines
whether an outlier is present or not, is parameterised as δr̄k,n,
where is the average of the q most recent error residuals, q
is a user–defined parameter and δ is a user–defined multipli-
cation factor. Apparently, the larger the δ is the less sensi-
tive the algorithm becomes in the detection of outlier vectors.
Moreover, in the case that we know that every data vector is
corrupted by an outlier vector, then δ should be set equal to
zero. The reason why the threshold is computed via an av-
erage over the q most recent error residuals, instead of the
whole history, is in order “forget” past values allowing op-
eration in non-stationary environments Note that, one could
adopt more sophisticated outlier detection mechanisms, e.g.,
[8], or taking into account the statistics of the residual or the
apriori information that the outlier vector is sparse. However,
even the simple outlier detection approach discussed above
appears to perform well enough. So, in this paper, we ad-
here to this scenario in order to give emphasis to other, more
important aspects of the proposed methodology.

4. NUMERICAL EXAMPLES

In this section, we examine the performance of the Robust
DSTAPSM in a non–stationary scenario. In particular we
show that cooperation leads to performance enhancement in a
network which comprises 5 nodes and 6 connections among
the nodes. The adopted performance metric, is the angle
between the true and the estimated subspace in logarithmic
scale. We adopt the model described in (1), with m = 100

and r = 20. We assume that U (n)
∗ = U∗, ∀n ∈ N, where the

columns of the m × r matrix U∗ are realizations of an i.i.d.
N (0m, Im) and then, they are getting orthornomalized. The
coefficients of the vector wk,n and the noise vk,n are drawn
from the Gaussian distribution with zero mean and variance
equal to σ2

w = 1 and σ2
v = 10−3 respectively. In order to

examine the tracking ability of the proposed scheme at time
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Fig. 2. Angle between the subspaces: the non–stationary case

instance 1000 the true subspace is changed abruptly.
Finally, we assume that 10% of the data vectors are con-

taminated with outliers. For the sparse outlier vector, we have
that ∥sn∥0 = 5 and its non–zero coefficients follow the Gaus-
sian distribution with zero mean and standard deviation equal
to 5. The positions of the non–zero coefficients of sn and the
time steps, on which the outliers occur, are selected randomly.

For the proposed algorithm, we set ϵ = 2 × σ2
v , β =

0.9, q = 20, M = 10, δ = 3 and λn = 1. Regarding
the step–size λk,n, extensive experimentation, indicated that
the larger the λk,n the faster the convergence, at the expense
of a higher error floor. Choosing λk,n = 1 leads to a good
trade–off between convergence speed and steady–state error
floor. Increasing the parameter M results in accelerated con-
vergence speed, which comes at the cost of a higher complex-
ity. It is assumed that we have an estimate of the number
of non–zero coefficients of the vector sn, employed in the
CoSaMP algorithm. Finally, the number of iterations utilized
in the CoSaMP for the outlier vector estimation, equals to 30.

The performance results are depicted in Fig. 2 where the
no cooperation refers to the average of the performances of
all the nodes when each one of them estimates the unknown
subspace solely relying on its own data. It is apparent that
cooperation leads to significantly enhanced performance.

REFERENCES

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito, “The internet of
things: A survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805,
2010.
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