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ABSTRACT

In this paper, we consider the problem of information sharing
over adaptive networks, where a diffusion strategy is used to
estimate a common parameter. We introduce a new model that
takes into account the presence of both selfish and malicious
intelligent agents that adjust their behavior to maximize their
own benefits. The interactions among agents are modeled as
a stochastic game with incomplete information and partially
observable actions. To stimulate cooperation amongst self-
ish agents and thwart malicious behavior, a trust management
system relying on a voting scheme is employed. Agents act
as independent learners, using the Q-learning algorithm. The
simulation results illustrate the severe impact of falsified in-
formation on estimation accuracy along with the noticeable
improvements gained by stimulating cooperation and truth—
telling, with the proposed trust management mechanism.

Index Terms— Trust management, multi—agent systems,
independent learning, adaptive networks, voting schemes.

1. INTRODUCTION

In the past years, numerous works have focused on analyzing
the behavior of autonomous agents, with possibly conflicting
goals, in the context of wireless network security using game
theory [4]. To stimulate cooperation among selfish agents,
or enforce malicious agents to comply with a predefined pol-
icy, trust or reputation mechanisms are employed; an agent’s
actions history is summarized into a single value, which is
commonly referred to as trust or reputation, depending on
the context. An important class of trust mechanisms are based
on reciprocity principles, where an agent can be punished for
the actions taken towards its peers according to a prescribed
punishment strategy. Reciprocity mechanisms are subdivided
into direct and indirect [2, 8, 10] —in direct, the interactions
history between two agents determines how they will interact
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in the future. In a highly dynamic network, where the same
pair of agents rarely interacts, indirect reciprocity is used, and
an agent’s trust depends upon its past interactions with all the
agents. Such schemes have important applications in packet
forwarding [2, 8], trust evaluation [5], and intrusion detection
[1], amongst others. The application of game theory to foster
cooperation for distributed in—network processing, has only
recently received attention. To be more precise, a reputation
mechanism was proposed in [11] to give incentives to selfish
agents to cooperate in estimating a common parameter. The
authors assume autonomous selfish agents whose interaction
is modeled as on one—shot game (the agents are randomly
paired); moreover, the nodes are bounded-rational, a notion
common in multi—agent systems [7].

In this paper we investigate the distributed parameter es-
timation problem under the presence of both selfish and ma-
licious agents using the rich framework of stochastic game
theory. In the game model, we let agents have incomplete in-
formation and partially observe actions, as they do not know
whether their peers are malicious or not and they are uncertain
about their actions. To combat uncertainty, we allow agents
utilize independent estimates of the unknown parameter from
their neighborhood in order to detect the action taken by a par-
ticular neighbor. We introduce a trust scheme that estimates
an agent’s trustworthiness based on its past interactions, and
formulate the agents as independent learners. Simulation re-
sults show how agents benefit from the proposed mechanism
in terms of estimation accuracy, which is due to the adherence
with high probability of all agents to honest policies.

The rest of the paper is organized as follows. In Section
2 we present the proposed network model and the system de-
sign follows in Section 3. Simulation results and concluding
remarks are given in Sections 4, 5 respectively.

2. SYSTEM MODEL

The basic constituents of the system model are introduced in
the following subsections. Hereinafter, letters in boldface are
column vectors @ if lowercase, or matrices X otherwise; "
denotes the transpose. Lowercase letters are used for scalars
and variables, whereas uppercase letters for sets. N'(u, 02) is

the Gaussian distribution with mean p and variance o2.

Network structure. Consider a set of n agents with sensing,
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computing, and communication capabilities coexisting in a
network; let G = (N, E) be the associated graph, where the
agents are labeled by the elements of N and F indicates di-
rect links. The nodes linked to ¢ € N (incl. node 7) form its
neighborhood that is denoted by NN;; we also define n; = |N,|
and N} = N;\ {i}. Agents are distinguished into three types:
malicious (M), selfish (S) and honest (H) and they pursue dif-
ferent goals depending on their type 7 € T = {M, S,H}. In
doing so, they employ private information collected by their
own sensors and information received by the neighbors.

Let the unknown parameters of the network be packed
into the vector & € R™. Selfish and honest nodes seek to
estimate 6. The difference is that honest nodes follow some
predetermined policy, while the selfish aim at estimating 6
at the lowest possible cooperation cost. On the other hand,
malicious nodes seek to estimate only a part, say 8, € R, of
6 = (6, 0z), and to impede the other nodes from achieving
their estimation goal!. Agents a priori recognize the value of
information received by others in enhancing estimation per-
formance. However, the types of the agents are unknown.
Thus, in the presence of malicious nodes, agents need to de-
cide if the information received by other agents can be trusted
or not. Hence, the agents need to detect other agents’ actions
and decide who they should trust. They are assisted in these
decisions by a trust management system (TMS) that computes
and updates the trust values of all agents, which are then made
available to the network.

Private information and data sharing. Nodes collect infor-
mation by means of their own sensors and their neighbors. At
time ¢, node ¢ has access to the regressor u;(t) € R™ and
an observation d;(t) € R. These data constitute the private
information of 7 and are linked with the true parameter via

di(t) = ui(t)"'0 + vi(t) (1)
where v;(t) ~ N(0,0?) is the measurement noise. Besides
the above sensing data, node i receives information from its
neighbors; let ¢’;(¢) denote the information received from
agent j € N}. The vector C;(t) augments agent’s i pri-
vate information with additional data which, if trustworthy,
can improve estimation performance compared to what is
achieved using private data only. If ¢;(¢) is node’s j estimate
of 6 at time ¢, each received signal satisfies the following
transmission model

i) = a;a(H)? - ¢;(t) — 5a5i()(1 — aji(t) - m;(t) (@)

where for simplicity we assume noise—free communications.
The parameter a;; € {0,£1} denotes the transmission deci-
sion of agent 4 at time ¢. Note that a;; = 0 corresponds to
the selfish action since it implies ¢’;(£) = 0, that is, no data is
sent. The honest action aj; = 1 implies that the true estimate

'Malicious behavior can be found in e.g. cognitive radio networks, where
a malicious agent could aim at reporting erroneous spectrum occupancy mea-
surements so that only he/she can exploit an available spectrum hole.
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¢;(t) is sent, while the malicious action aj; = —1 generates
the erroneous estimate ¢;(Z) + #n;(¢). In order to degrade
the estimation performance of node i, node j adds Gaussian
noise 1 (t) ~ N (p;, p3J), where we let u; = (0 1 ) and
J = diag(0, 1g) due to the assumption that malicious nodes
are only interested in estimating 6,. We further assume that
the action a;; = —1 can be taken by malicious agents only.

Decisions, states and rewards. The model we consider for
agents’ interactions deviates from the commonly used ran-
dom pair—matching [2, 8, 9, 11], and falls into the category of
multi—agent systems [7]. The agents take transmission and re-
ception decisions; the transmission decisions are represented
by the transmission actions a;; and depend on the agent’s type
T, since the set of possible transmission actions is
{_ 1,0, 1}7

o

At the receiver side, the agents must decide whether each re-
ceived signal is true or intensionally falsified. This decision
relies on the trustworthiness of the agents sharing estimates,
and such information is included in the state.

if =M,
otherwise.

A(r) 3)

The state s = (s; s—;) consists of the trust values of node
i and its neighbors s_; = (s;);jen>; the closer to 1 the value
of s; € B = {0,1/5,1} is, the more trusted node i is consid-
ered. The set S = {s; };cn of all trust values is assumed to be
shared information and becomes available through the TMS.
The state transition probabilities Pr(s’|s, a;,a_;, T) of the
stochastic game are also defined by the TMS, where s’, s are
the new and current state respectively, 7 = (7; T_;) gathers
the types of nodes in IN;, while we have a; = (a;;);jen> and
a_; = (aji)jen; -

To simplify the notation, the dependence of variables on
time ¢ is omitted whenever it is clear from the context. The
instantaneous reward of agent ¢ at time ¢ is decomposed as

“4)

Ri,t(sv Ty A—g,s Ti) = fi,t(sv a—i) + gi,f,(s7 Ty Ti)

where 7;(t) is the transmission policy followed by agent i in
time ¢ (i.e. transmission actions as functions of the state), f; ;
equals the profit gained by receiving information from neigh-
boring nodes, while g; ; is associated with the gains and costs
resulting from transmission actions. Each agent ¢ wants to
maximize the discounted sum of instantaneous rewards over
a finite time horizon &

k—1
max 5f]ERl st,mt,a_it,n 5
e N g E[Rii(s(1), mi(t),a—i(1), )] (9)

where ¢; € (0, 1) is a discount factor that defines the relative
importance given by agent ¢ to short—term rewards.

The above formulation constitutes a stochastic game with
incomplete information since the types of the agents are un-
known and their actions are not fully observable.



23rd European Signal Processing Conference (EUSIPCO)

3. SYSTEM DESIGN

The proposed system design encompasses a sequence of steps
timed as follows:

a.
b.
c.

Selection of transmission policy;

Clustered action detection;

Trusted adapt-then—combine (TATC) strategy for adap-
tive parameter estimation; and

d. Voting and trust update.

Details of the above protocol are given next.

Selection of transmission policy. Since the state—action
space can be large and information is incomplete, the stochas-
tic game is hard to solve. To cope with these issues, we
confine to the set I = {II(7) : 7 € T} of admissible poli-
cies, which is a subset of Markovian policies. Each type of
agent is associated with a desired policy, which is a mapping
7wr : B — A(1), 7 € T. We assume that the honest agents
behave as prescribed by the TMS, by helping only the trusted
agents; thus, we let the agents take the same action towards
neighbors with the same trust value, and we have m4(s) = 1
if s = 1, and m4(s) = 0 otherwise. This behavior is similar
to that of obedient agents in [9]. Thus, IT(H) = {mu}.

The selfish agents aim at enjoying the cooperation benefits
while minimizing their cooperation costs (called free—riders
in [9]). Hence, their desired policy is not to share informa-
tion, implying that 7g(s) = 0, Vs € B. In a similar fashion,
the desired policy of malicious agents is sending false esti-
mates, according to (2), therefore my(s) = —1, Vs € B.
Malicious and selfish agents are rational and thus can take an
alternative policy if that is more beneficial; that is, selfish and
malicious agents are strategic, and explore between the de-
sired policy and 7y using the learning algorithm. Therefore
I1(S) = {ms, mu} and IT(M) = {my, mu}.

Instantaneous reward. The function f; ; in (4) represents the
gains offered by cooperation in estimation performance, as
perceived by agent . It is given by

fie(s.ai) =0:(t) — C;(t)I]3

where 0;(t) is node’s ¢ estimate of 6 at time ¢ when using the
estimates received by its neighbors. If most neighbors choose
the honest policy my, then a rational malicious or selfish node
could see that it would possibly be beneficial to be considered
trusted in a certain neighborhood. The function g; ; includes
communication costs ¢ € RT to send ¢ (¢) to its neighbors,
and illegal gains e > c if acting maliciously; it is given by

(6)

es;—c, ifm=my, =M
gi,t(s77ri77—i) = —C, lf T, = TH (7)
0, ifm,=ng, =8

where the illegal gains represent the profit obtained by either
degrading the estimation performance or the trust value of its
neighbors. Note that g; ; depends on s; as well.
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Clustered action detection. Recall that the actions of the
agents are not observable. This contrasts many works in the
trust literature that either assume observable actions or that
some monitoring mechanism exists allowing perfect action
detection (see [8]). Each node i decides on the transmission
actions of its neighbors using its own estimate ¢, (t), the re-
ceived signals {C’;(¢)};en> and the trust values made pub-
licly available by the TMS. For convenience, we assume that
the selfish action is observable. The action detection is per-
formed by the k—means clustering algorithm, which classifies
the estimates at time ¢ in two clusters Cy, Cy; containing the
agents detected to have taken the malicious and honest action
respectively —Cy, is the the cluster that includes agent 4.

TATC strategy for parameter estimation. The proposed
design employs the adapt—then—combine (ATC) strategy [11]
for information exchange and parameter estimation. In this
case, the node’s i estimate of @ at time ¢ is denoted by 0;(¢),
and is computed in two steps. First, node ¢ adapts 6;(¢t — 1),
using new local measurements, in order to obtain the interme-
diate estimate

where v; > 0 is a suitable step—size parameter, assumed to be
sufficiently small for all nodes; without loss of generality, we
letv; = v, forall7 € N. Then, node ¢ combines the estimates
received from its neighbors to yield a new estimate via

0;(t) = Z Yij(s,a_;) - C5(t)

JEN;

€))

where 7;;(s,a_;) € [0,1] is the weight given by node i to
its neighbor 7, and the received vector C'j(t) is given by (2).
The weights are chosen so that } .y 7ij(s,a—;) = 1, for
all nodes i € N.

Let s = max{0,2s; — 1}, for i € N. The above allows
node ¢ to realize the combine step given by (9) in a secure
way, by utilizing at time ¢ the following weights

1/h;, ifjeCyandj =i

s/h;, ifj € Cyandj # i
0,

(10)

Yij (37 a—i)
otherwise

where by =143, cc- s and C}; = Cy \ {¢}. Thus, not only
do we confine ourselves to nodes having taken a presumably
honest action, but also to nodes who have proved to be honest
in the past interactions. Clearly, the more noisy the erroneous
estimates exchanged by a malicious node become, the higher
the probability of correct detection is. In this case, (10) just
yields a uniform combination of trusted estimates.

Voting and trust update. The state transitions, meaning the
update of the trust values, depend on how agents’ actions are
perceived by their neighbors and on what evaluations they
subsequently submit to the TMS to derive an instantaneous
trust score. The agents vote about the trustworthiness of their
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neighbors on the basis of the action detection outcome. Let
zj; € B be the vote of agent j € N; for 4, at time {. We
assume that honest and selfish agents vote correctly, in the
sense that they report the detected actions of their neighbors
and therefore z;; = (1 + @;;)/2. On the other hand, it is more
realistic to let the vote of malicious nodes be a random vari-
able [1]. Let zj; = % if @;; = 0, since the selfish action was
assumed to be observable; furthermore we let

Pr (Zji

for the malicious agents to vote correctly, for some p € [0, 1].
The votes are aggregated by the TMS to get an instantaneous
trust score

2

an

aij?éo) =p

xT; = E Wij Zji 5 Vie N
JENT

12)

where the weights w;; = s,/ >, v~ 51 are used by the TMS.
The instantaneous trust score is then used to compute the trust
value of agent ¢ at time ¢ + 1 as follows

si=(1—=pB)zi+ Bs; (13)

where s; is then rounded to the nearest value of B, and the
scalar 5 € (0,1) is a forgetting factor; smaller values of
give more importance to recent actions. From the above anal-
ysis, it is seen that malicious nodes have the maximum impact
on the network whenever they are considered to be honest by
the TMS. This is also reflected in the reward function g; ¢,
where the illegal gains of agent ¢ are maximized for s; = 1.

Learning algorithm. As the transition probabilities are
unknown due to the non—observable actions and the lack
of knowledge of the nodes’ types, agents should resort to
a learning method to evaluate their policy over time. Q-
learning is a well known reinforcement learning algorithm
for the single agent decision making problem, whose exten-
sion however into a multi—agent scenario is known to be hard
[6]. To overcome this difficulty we assume that each agent
is an independent learner in this non—stationary environment
and does not make any reasoning on other agents’ future ac-
tions. Agents select an action at each time with an ¢—greedy
policy and update their Q—function as

Qi 418, m) = Qit(si,mi) + wy (Ri,t(saﬂiaafiaﬂ') (14)

+0; lea;X{QLt(S/“ﬂ-Z) - Qi,,t(siﬂw)})

where w; € R and s}, 7} stand for the trust value and policy
at time ¢ + 1. Due to the non—stationarity of the environment
on f; ; and on the other agents’ policies (chosen at each time
t), we let the agents explore with a probability ¢ € (0,1) and
exploit with a probability 1 — ¢ the knowledge accumulated
through time. Other algorithms that have been proposed in
the literature, such as fictitious play and Nash—Q, do not fit in
our case, as the strategies of malicious and selfish agents are
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Fig. 1. Expected MSE of an honest agent with and without a
trust management system.

not stationary (a requirement for fictitious play) and the other
nodes’ types are unknown. Therefore, an agent is not able to
compute the expected Nash equilibrium behavior of its peers
(a requirement for Nash—Q).

4. SIMULATION RESULTS

Throughout the simulations we consider fully connected net-
works, implying that each node can exchange information
with any other network node, which is the usual setup in most
of the works in distributed parameter estimation and diffusion
adaptive networks. The global parameter 8 = (0, 6z) € R™
has length m = 20, whereas 8, € R' has length [ = 10. For
simplicity, we assume the measurement noise v;(¢) in (1) has
the same variance 01»2 = 10~2 for all nodes, and the step—size
parameter in the adaptation step (8) equals v; = 10~2. The
noise generated by malicious agents to corrupt the estimates is
Gaussian n,;(t) ~ N((0, 3r),J). Furthermore, we assume
that malicious agents exhibit colluding behavior, and we let
p = 0 in the simulations (i.e. they always vote for the opposite
from the detected action). The other parameters’ values are as
follows: the forgetting factor 5 = 0.3 in voting, the discount
factor §; = 0.95 and the learning rate w; = 0.95. In addition,
we define the transmission cost and the illegal gain in (7) as
c=15-10"%and e = 1072 respectively. The simulations
are executed for a finite time horizon k& = 1.6 - 103, where
the exploration probability is ¢ = 0.4. In all network settings
considered next, 100 Monte Carlo simulations are performed
and average results are depicted.

First, assume a network with an honest, a selfish, and a
malicious agent, where the noise 7, (¢) is such that the action
detection probability of malicious actions is high. Using the
mean square error (MSE) to measure the performance gains
in estimation, we compare in Fig. 1 the MSE achieved by an
agent when using or not the trust management system. While
the MSE converges to zero when using the proposed TMS,
this is shown to be impossible without it. Thus, the existence
of defensive mechanisms in order to detect, and if possible to
prevent, the malicious behavior is necessary in an untrusted
environment.

The case of a network with n = 4 agents is depicted in
Fig. 2, where three agents are honest, and the remaining one



23rd European Signal Processing Conference (EUSIPCO)

1.2 T
=
= L
I 0.8 — S 5 = 1/2 B
Ko
[ — S 5, =1 i
= ‘ —M:5=0
=) I i |
B 0.4 — M5 =1
xe -~ — — M: MSE . 1
0 ! ! = e
0 0.4 0.8 1.2 1.6

time ¢ x 103

Fig. 2. Fraction of times the optimal policy of a non-honest
agent is the honest policy my for a given state.

(node 7) being either selfish or malicious. Depending on the
trust value s;, we show the fraction of times that the optimal
policy w7 = arg max,, Q;+(S;,m;) equals the honest policy
my. It is seen that the optimal policy for a selfish agent is to
be honest most of the time, and specifically at the beginning
where the estimation gains are high. However, as the value of
fit approaches 0, there exists a time instant ¢y beyond which
cooperation is not beneficial and the optimal policy is 7s. The
findings are similar for the malicious agent, except when it is
considered to be untrusted by the TMS. In that case, 7 is the
malicious agent’s optimal policy (with high probability), as it
aims at having a high trust value to harm its peers.

The last simulation deals with a larger network of n = 70
nodes with 10 malicious and 20 selfish agents. In Fig. 3a,
we show the percentage of selfish and malicious nodes whose
optimal policy is 7y regardless their state. The sharp decrease
on the percentage of selfish agents was explained above. The
optimal policy of most malicious agents is initially 7y and
my subsequently. Their erratic behavior is due to the fact that
they take 7y if s; = 1, and when they do so, this is detected by
their neighbors and the voting mechanism. Fig. 3b shows that
the state evolution of selfish and malicious nodes decreases,
which implies a sound voting scheme.

5. CONCLUSIONS

The problem of sharing information over adaptive networks,
in the presence of malicious and selfish agents, was studied in
this paper. It was shown that for proper parameter values, the
malicious actions can be successfully detected, and the agents
acting in a malicious way are then assigned low instantaneous
trust value by the TMS. Under the proposed game model, the
agents were seen to follow a truth telling strategy for a period
that is beneficial for them. Ongoing research seeks to yield
necessary and sufficient conditions for truth telling strategies,
as well as, to derive Nash equilibria.
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