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ABSTRACT
In the past decades, Sequential Monte Carlo (SMC) sampling
has proven to be a method of choice in many applications
where the dynamics of the studied system are described by
nonlinear equations and/or non-Gaussian noises. In this pa-
per, we study the application of SMC sampling to nonlinear
state-space models where the state is a fractional Gaussian
process. These processes are characterized by long-memory
properties (i.e., long-range dependence) and are observed in
many fields including physics, hydrology and econometrics.
We propose an SMC method for tracking the dynamic long-
memory latent states, accompanied by a model selection pro-
cedure when the Hurst parameter is unknown. We demon-
strate the performance of the proposed approach on simulated
time-series with nonlinear observations.

Index Terms— Sequential Monte Carlo, particle filtering,
fractional Gaussian process, state-space models.

1. INTRODUCTION

The analysis of time-series is critical in a multitude of fields
including engineering, science and economics [1, 2, 3]. In all
these areas, stochastic processes are widely used to model the
behavior of observed and latent data. At times, the process
is modeled according to a physical mechanism that generates
the data. Other times, the data are described in a purely statis-
tical sense, without providing a meaningful interpretation of
the model parameters. Among the relevant features of such
models, the “memory” of the data is considered to be one of
its most important characteristics.

On the one hand, experts in many scientific areas have
studied short-memory processes in the form of AR, MA,
ARMA and other Markov processes. The study of ARMA(p, q)
time-series was pioneered by Box and Jenkins [4] and later
continued by Durbin in state-space form [2]. In simple words,
in short-memory processes only few past samples affect the
present data values. On the other hand, in long-memory se-
ries, the present value is dependent on samples far into the
past. These long-memory processes have attracted attention
of practitioners in the last decades [5, 6].

The groundwork on long-memory processes was laid by
Hurst [7], when he found that the Nile river data manifested
long-range dependence. Later, many other hydrological, geo-
physical, and climatological records were reported to describe
similar characteristics. Motivated by the verification that a
plethora of real-life time-series manifest such properties [5,
8], we hereby study long-memory processes that are not di-
rectly observed.

To do so, we adopt the state-space paradigm, where the
evolution of a system is modeled by a hidden long-memory
process, associated with a set of sequentially observed data.
In particular, we are interested in latent fractional Gaussian
processes (described in Section 2) and nonlinear observation
models. Due to the implicit nonlinearities of such models for
estimation of the hidden process, we use sequential Monte
Carlo (SMC) methods, also known as particle filters (PFs) [9,
10, 11]. They have been successfully applied to many fields
[12, 13, 14].

In this paper, we present a new SMC method that can track
latent fractional Gaussian processes. Known and unknown
parameter cases, under nonlinear observation equations, are
considered. In Section 2, we provide an overview of the frac-
tional Gaussian process. The problem of interest is formally
introduced in Section 3, for which we propose SMC solutions
in Section 4. Computer simulation results for performance
evaluation of the methods are contained in Section 5. We
complete the paper with our conclusions in Section 6.

2. BACKGROUND

The intuitive interpretation of a long-memory process is that
the dependence between events that are far apart diminishes
slowly with increasing lag τ . In statistical terms, the mem-
ory of the process is accurately described by the autocovari-
ance function γ(τ) of the process. Recall that we hereby con-
sider stationary processes and thus, the autocovariance only
depends on the time-lag τ .

For ARMA and Markov processes driven by stationary
noises with independent samples, the decay of the autocovari-
ance is asymptotically exponential. It has been proven that an
upper bound of the form |γ(τ)| ∝ baτ for some real scalars
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0 < b < ∞ and 0 < a < 1 exists for short-memory pro-
cesses. On the contrary, a slower decay of the autocovariance
is observed in long-memory data. Specifically, their decay
is explicitly modeled by an autocovariance function propor-
tional to τ−α for some real scalar α ∈ (0, 1) [5].

A stationary process xt with slowly decaying autoco-
variance function is called a stationary long-memory process
when the following relation holds:

lim
τ→∞

γ(τ)

c · τ−α
= 1, (1)

for real scalars c and α ∈ (0, 1). Note that, because this is an
asymptotic definition, it provides us with the ultimate behav-
ior of the autocovariances as the lag tends to infinity. How-
ever, it does not specify its magnitude at any fixed lag.

Additionally, long-memory processes often show self-
similarity properties. That is, the whole process possesses
same (or similar) shapes as one or more of its parts. This
feature was first introduced by Mandelbrot [15] and has been
identified in many long-memory processes.

Among the stochastic processes that fulfill such condi-
tions, we focus on fractional Gaussian processes, which rep-
resent the increments of the fractional Brownian motion BHt .
BHt is a self-similar process with self-similarity parameter
H ∈ ( 12 , 1), known as the Hurst parameter, and stationary
Gaussian increments ut. The increments, ut = BHt − BHt−1
are the fractional Gaussian noise. Because the process ut is
stationary and Gaussian, its sufficient statistics are its mean
and autocovariance. For a zero-mean fractional Gaussian pro-
cess, its autocovariance function is given by

γ(τ) =
σ2

2

[
|τ − 1|2H − 2 |τ |2H + |τ + 1|2H

]
, (2)

where σ2 is the variance of the process. For 1
2 < H < 1, the

process has long-range dependence; and, for H = 0.5, the
observations are uncorrelated, as the expression in (2) simpli-
fies to the Kronecker delta function: i.e., γ(τ) = σ2δ(τ). We
depict the shape of the autocovariance of the fractional Gaus-
sian process for different Hurst parameters in Fig. 1, where
the long-term dependence is obvious as H → 1.

If short-memory processes, such as ARMA(p, q) models,
were used for modeling non-quickly decaying autocovariance
functions, one would need to increase the model orders p and
q. Actually, the number of parameters tends to infinity. In
practice, an excessive number of parameters is undesirable
for many reasons and, especially, because it increases the un-
certainty of the statistical inference. Therefore, the parsimo-
nious description provided by the fractional Gaussian process
is a more satisfactory model to describe such autocovariance
decays.

3. PROBLEM STATEMENT

In this paper, we are interested in the study of latent long-
memory processes observed through nonlinear functions.
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Fig. 1. Autocovariance of the fractional Gaussian noise for
different Hurst parameters.

Mathematically, we model such time-series by the following
state-space representation:{

xt = ut, state equation
yt = h(xt, vt), observation equation

(3)

where ut represents a zero-mean fractional Gaussian process
with autocovariance function γu(τ) as in (2).

Our goal is to sequentially infer the hidden state xt+1 as
new observations become available. To do so, we are inter-
ested on the filtering density f(x1:t+1|y1:t+1) which, due to
the nonlinearities considered, is approximated by a random
measure updated sequentially by SMC sampling. Specifi-
cally, the distribution f(x1:t|y1:t) is updated to f(x1:t+1|y1:t+1)
once a new observation yt+1 becomes available. We factorize
the distribution of interest according to

f(x1:t+1|y1:t+1) = f(xt+1|x1:t, y1:t+1)f(x1:t|y1:t), (4)

so that the sequential importance sampling methodology can
be applied. In a nutshell, SMC sampling consists of sequen-
tially updating a random measure that approximates the dis-
tribution of interest by following the recursion in (4). A ran-
dom measure χ is composed of a set of M particles x(m)

and associated weights w(m), i.e., at time instant t, χt =

{x(m)
1:t , w

(m)
t }, m = 1, 2, · · · ,M .

In SMC sampling, the propagation of the random measure
at time instant t is achieved by drawing particles from

x
(m)
t+1 ∼ π(xt+1|x1:t, y1:t+1), (5)

and assigning weights according to

w
(m)
t+1 ∝

f
(
yt+1|x(m)

t+1

)
f
(
x
(m)
t+1|x

(m)
1:t

)
π
(
x
(m)
t+1|x

(m)
1:t , y1:t+1

) w
(m)
t . (6)
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Due to the complexity of drawing samples from the op-
timal distribution π(xt+1|x1:t, y1:t+1), we resort here to the
simple but frequently used transition density f(xt+1|x1:t)
that leads to particle weight updates according to w

(m)
t+1 ∝

w
(m)
t · f(yt+1|xt+1). The challenge is on deriving the transi-

tion density f(xt+1|x1:t) for fractional Gaussian processes.

4. PROPOSED APPROACH

As presented in Section 2, the fractional Gaussian noise is a
zero-mean Gaussian stationary process with autocovariance
function as in (2). Therefore, at time instant t + 1, the joint
distribution of the whole process follows a zero-mean multi-
variate Gaussian, i.e., x1:t+1 ∼ N (0,Ct+1) where

Ct+1 =

(
ct+1 ct+1

c>t+1 Ct

)
, (7)

and

ct+1 = γu(0),

ct+1 = ( γu(1) γu(2) ··· γu(t−1) γu(t) ) ,

Ct =


γu(0) γu(1) γu(2) ··· γu(t−2) γu(t−1)
γu(1) γu(0) γu(1) ··· γu(t−3) γu(t−2)

...
...

...
. . .

...
...

γu(t−3) γu(t−4) γu(t−5) ··· γu(1) γu(2)
γu(t−2) γu(t−3) γu(t−4) ··· γu(0) γu(1)
γu(t−1) γu(t−2) γu(t−3) ··· γu(1) γu(0)

 .

Note that the covariance matrix of the joint distribution of the
fractional Gaussian process at time t + 1 is determined by
computing the Toeplitz matrix of the autocovariance function
up to lag τ = t.

From this joint distribution and, given the last t samples
of the process, we can compute the conditional distribution of
the next sample xt+1, given x1:t. It follows that the resulting
transition distribution is the univariate Gaussian

f(xt+1|x1:t) = N (µxt+1|x1:t
, σ2
xt+1|x1:t

),

where

{
µxt+1|x1:t

= ct+1C
−1
t x1:t,

σ2
xt+1|x1:t

= γu(0)− ct+1C
−1
t c>t+1.

(8)

We now present two SMC schemes that leverage the tran-
sition density in (8) for fractional Gaussian processes. We
first describe in subsection 4.1 the case when the parameter
H is known. In subsection 4.2, we present a solution without
assuming knowledge of the Hurst parameter.

4.1. Known Hurst parameter

Let us assume that at time instant t, we have the random mea-
sure χt =

{
x
(m)
1:t , w

(m)
t

}
, where m = 1, · · · ,M and knowl-

edge of the Hurst parameter H . Upon reception of a new data
sample yt+1, we proceed as follows:

1. Perform resampling (to avoid sample degeneracy) by
drawing from a categorical distribution defined by the
random measure χt,

x
(m)
1:t ∼ χt, where m = 1, · · · ,M.

2. Compute the necessary sufficient statistics in (7) by using
the autocovariance function for τ = 0, 1, · · · , t ,

γu(τ) =
σ2

2

(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
.

3. Propagate the particles by sampling from the transition
density, given the resampled streams:

x
(m)
t+1 ∼ f(xt+1|x(m)

1:t ) = N (µ
xt+1|x(m)

1:t
, σ2

xt+1|x(m)
1:t

),

where

µxt+1|x(m)
1:t

= ct+1C
−1
t x

(m)
1:t ,

σ2

xt+1|x(m)
1:t

= γu(0)− ct+1C
−1
t c>t+1.

4. Compute the non-normalized weights of the drawn parti-
cles according to

w̃
(m)
t+1 = f(yt+1|x(m)

t+1),

and normalize them to obtain a new random measure

χt+1 =
{
x
(m)
1:t+1, w

(m)
t+1

}
.

4.2. Unknown Hurst parameter

In practice, assuming knowledge of the parameter H of the
hidden fractional Gaussian process is unrealistic and thus,
new alternatives must be considered. It has been extensively
reported that SMC sampling techniques suffer when track-
ing fixed model parameters [16]. To overcome such limita-
tions, various methodologies have been suggested [16, 17].
In these, an approximating model is assumed for the fixed pa-
rameter, either by assuming a slowly varying parameter or by
approximating the joint distribution of the parameter and the
state. However, these approaches raise several concerns in
our problem of interest. On the one hand, assuming a varying
H would not only break important properties of the process
(i.e., stationarity and self-similarity), but would also affect the
mixing properties of the states, thus endangering the conver-
gence properties of the SMC algorithm. On the other hand,
determining a suitable density for H is challenging, due to its
complicated dependency on the state.

Consequently, we resort to an alternative solution that
consists of a bank of K parallel SMC filters with different H
parameters, Hk ∈ [0.5, 1), k = 1, 2, · · · ,K; followed by a
model selection scheme. Each of the SMC filters proceeds
as described in subsection 4.1 for a given Hk. For the model
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selection criteria, we consider the k = 1, 2, · · · ,K predictive
likelihoods of the observations

f(yt+1|y1:t, Hk) =
∫
f(yt+1|xt+1)f(xt+1|y1:t, Hk)dxt+1. (9)

To numerically solve the otherwise analytically non-solvable
integral, we propose to take advantage of the random measure
provided by each SMC instance. That is, given

f(xt+1|y1:t, Hk) ≈
∑M
m=1 w

(m)
t f(xt+1|x(m)

1:t , Hk)δ
(
x1:t − x(m)

1:t

)
, (10)

J predictive samples are drawn from the transition density,
i.e., x(m,j)t+1 ∼ f(xt+1|x(m)

1:t , Hk), j = 1, 2, · · · , J . Thus, we
approximate the predictive likelihood of the next observation
with

f(yt+1|y1:t, Hk) ≈
M∑
m=1

w
(m)
t

J

J∑
j=1

f(yt+1|x(m,j)t+1 ). (11)

Based on this metric, the best model parameter H∗ that de-
scribes the observed sequence y1:t+1 is obtained from

H∗ = argmax
Hk

t∑
i=1

log f(yi+1|y1:i, Hk). (12)

5. SIMULATION RESULTS

We evaluate the suggested SMC sampling methods under the
stochastic volatility model, where the log-volatility of the ob-
served time-series is a fractional Gaussian process. Volatility
models with long-memory characteristics have been widely
studied in finance [8]. The goal is to estimate the evolving
volatility of an observed series of stock prices. Mathemati-
cally, the corresponding state-space model is written as{

xt = ut,

yt = ext/2vt,
(13)

where ut is a zero-mean fractional Gaussian process with
autocovariance function as in (2) and vt ∼ N (0, σ2

v). For
the following simulation results,1 we assume σ2 = 1 and
σ2
v = 1. We evaluate the performance of the methods for

different Hurst parameter values.
The state filtering accuracy of the proposed SMC for the

known Hurst parameter case is presented in Fig. 2. The re-
sults illustrate the implicit benefits of tracking long-memory
processes. As H → 1, more information is provided by past
samples in estimating the present value of the series and thus,
the performance of the SMC sampling technique improves.
That is, it is possible to more accurately estimate the time-
evolving log-variance of the observed time-series, because of
the slow decay of the autocovariance function in such long-
memory processes.

1The presented results are performance metrics averaged over R = 100
realizations of 200 time-instant series with M = 1000 particles.
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Fig. 2. MSE of the state for different Hurst parameters.

SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 0.75585 0.7384 0.7414 0.76453 0.7468 0.70245
H2 = 0.6 0.76235 0.73161 0.71785 0.71312 0.66156 0.59087
H3 = 0.7 0.78312 0.73957 0.70206 0.67159 0.57899 0.47794
H4 = 0.8 0.82449 0.76833 0.70837 0.65323 0.52737 0.39924
H5 = 0.9 0.9034 0.83263 0.74516 0.67107 0.50654 0.35076
H6 = 0.95 0.98512 0.90572 0.80342 0.71992 0.51913 0.33772

Table 1. MSEs of the state for a bank of SMC filters.

As described in subsection 4.2, we resort to a bank of par-
allel SMC filters when the Hurst parameter is unknown. The
results of this experiment are contained in Table 1, where it
is clear that the most accurate inference is attained when the
correct parameter value is assumed. Furthermore, for rapidly
decaying autocovariance functions (i.e., 0.5 ≤ H < 0.75),
there is a minimal performance difference among the SMC fil-
ters that assume H values in this interval. On the contrary, as
the long-memory effect becomes more evident (H ≥ 0.75),
only the filters with values close to the true one provide good
accuracy. In conclusion, the relevance of long-memory de-
pendence is highlighted.

For the unknown Hurst parameter case, we run the bank
of SMC schemes in parallel and thus, there is a need for a
model selection scheme that identifies the correct H value.
When evaluating the likelihood of the observed time-series
for different models, only those with assumed Hk parameter
close to the correct one are able to provide the best results (see
Fig. 3). The results presented here are obtained for J = 100,
which provides an improved predictive performance at an ac-
ceptable computational overhead. We illustrate the validity
and accuracy of the proposed model selection procedure with
Table 2 and confirm that it improves as more instances of the
time-series are observed.

Finally, we emphasize once more the difficulty of distin-
guishing the processes with rapidly decaying autocovariance
functions (i.e., 0.5 ≤ H < 0.75). By contrast, for long-mem-
ory processes, the long-range dependence induced as H → 1
helps the SMC sampling to identify the correct model. In
other words, only when capturing the influence of the sam-
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SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 40 53 44 36 28 21
H2 = 0.6 13 15 5 4 10 3
H3 = 0.7 5 6 6 13 8 8
H4 = 0.8 9 5 11 9 5 8
H5 = 0.9 9 4 5 5 9 11
H6 = 0.95 24 17 29 33 40 49

SMC bank True H
K=6 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.95

H1 = 0.5 71 42 16 2 1 3
H2 = 0.6 11 29 17 11 2 1
H3 = 0.7 9 19 34 29 1 2
H4 = 0.8 2 6 21 39 21 5
H5 = 0.9 3 3 10 12 38 17
H6 = 0.95 4 1 2 7 37 72

Table 2. Model selection confusion matrix at t = 10 (left) and t = 200 (right).
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Fig. 3. Cumulative log-likelihood of a time-series (H = 0.9).

ples deep in the past on the present values, the SMC method
is able to accurately predict the next observations.

6. CONCLUSIONS

In this paper, inference of long-memory processes under non-
linear state-space models has been considered. We have stud-
ied the characteristics of the fractional Gaussian noise and
have derived its transition density. We have proposed Se-
quential Monte Carlo methods that successfully estimate la-
tent fractional Gaussian processes, when the Hurst parameter
is either known or unknown. Comprehensive simulation re-
sults demonstrate the validity of the suggested SMC methods
and the model selection procedure.
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