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ABSTRACT

This paper addresses the problem of joint estimation of time
series of gene expressions and identification of the coefficients
of gene interactions defining the network. The proposed method
exploits a state-space structure describing the system so that a
bank of particle filters can be used to efficiently track each of the
time series separately. Since each gene interacts with some of
the other genes, the individual filters need to exchange information
about the states (genes) that they track. The analytical derivation
of the posterior distribution of the states given the observed data
allows for marginalization of the matrix describing the interactions
in the network and for efficient implementation of the method.
Computer simulations reveal a promising performance of the
proposed approach when compared to the conventional particle filter
that attempts to track the time series of all the genes and which, as a
result, suffers from the curse-of-dimensionality.

Index Terms— Gene regulatory network, particle filtering,
dimensionality reduction.

1. INTRODUCTION

A gene regulatory network is a collection of genes interacting
with each other and with other substances in order to govern cell
functions. Inference of gene regulatory relationships is a very
important problem in biology. The inference can be based on time
series that represent genome expressions. Various frameworks have
been proposed for identifying gene regulatory networks including
Boolean networks [1, 2], neural networks [3], differential equations
[4], factor graphs [5] and Bayesian networks [6, 7, 8]. Among these
approaches, Bayesian dynamical networks have been particularly
popular [9, 10, 11].

In a realistic scenario of a dynamic gene regulatory network, the
evolution of the genes is modeled by a nonlinear function. Typically
the number of genes is very high, and their evolution with time
is tracked by using noisy measurements of gene expressions. A
standard model for tracking is the state-space model where the states
represent the various genes in the network. Not surprisingly, the
state-space models have already been extensively studied and a wide
range of estimation algorithms have been investigated [12, 13]. The
most well-known method is the Kalman filter, which is employed
when the models are linear and Gaussian [14, 15]. If the models
are nonlinear, one option is the Extended Kalman Filter (EKF) [16].
While being computationally efficient, the EKF has the disadvantage
that it is restricted for problems with Gaussian noise and that it
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has low accuracy in the case of severe nonlinearities. There are
other variants of the Kalman filter. For example, in [17], a cubature
Kalman filter is employed for the estimation of the gene expressions.

A successful methodology for estimation of nonlinear dynamic
systems is particle filtering [18, 19]. With particle filtering, the
nonlinearities are not approximated. Instead, one approximates the
distributions of the system unknowns by discrete random measures.
In [20], a particle filter with Markov Chain Monte Carlo move is
employed to estimate the system parameters. In this work, the
system dynamics are described by a deterministic model based on
ordinary differential equations. In [21], the estimation is carried out
by the unscented particle filter. A method that combines Kalman
and particle filtering is proposed in [22]. Other approaches to the
problem include the use of the Expectation Maximization algorithm
[15]. A point-based Gaussian approximation filter that incorporates
prior information about the gene regulatory network is presented in
[23].

In this paper we address the estimation of gene expression and
the interacting coefficients defining the system of evolving genes by
particle filtering. Since in practice the addressed problem can be of
very large dimensions, traditional particle filters (PFs) produce an
approximation error that increases exponentially in the dimension
of the state and suffer from what is referred to as the curse-of-
dimensionality [24, 25]. We propose to apply a bank of PFs,
each of them tracking one gene and its corresponding interacting
coefficients. This concept has already been introduced as multiple
particle filtering [26, 27]. The novelty in this paper is in the
implementation of optimal particle filtering by each of the PFs. For
correct functioning of the proposed approach, the filters need to
communicate information related to the individual genes that they
track. Each filter works on a minimal dimensional subspace and
therefore the method is efficient while maintaining the performance
accuracy.

The remaining of the paper is organized as follows. The next
section introduces the problem formulation and the mathematical
notation. In Section 3, the proposed multiple particle filtering
method is explained with a detailed derivation of the optimal
proposal function and specific description of the step-by-step
implementation. Numerical results in Section 4 demonstrate the
validity of the new approach and its improved performance over
that of standard particle filtering. Finally, some concluding remarks
complete the paper in Section 5.

2. PROBLEM STATEMENT

In our description of the problem, we follow [22]. Let the system of
interest be comprised of N genes. The genes evolve with time and
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the matrix corresponding to the gene expressions at time instant t is
denoted by Xt ∈ RN×t and defined as

Xt =


x1,1 x1,2 · · · x1,t

x2,1 x2,2 · · · x2,t

...
...

...
...

xN,1 xN,2 · · · xN,t

 , (1)

where xn,j is the expression of the nth gene at time instant j. For
convenience, we denote the vector of all genes at time instant t by
xt ∈ RN×1, and it corresponds to the tth column vector of the
matrix Xt), i.e., xt = [x1,t x2,t · · · xN,t]

>.
The evolution of the genes is described by

xt = Agt−1 + ut, (2)

where A ∈ RN×N is an unknown matrix whose rows are denoted
by a>n , i.e.,

A =


a>1
a>2
...
a>N

 , (3)

a>n = [an,1 an,2 · · · an,N ]. (4)

Note that the coefficient an,m indicates the regulatory relationship
between gene n and gene m (positive vs. negative value signifies
activation vs. repression activity, respectively). For the priors of an,
n = 1, 2, · · · , N , we assume

p(an) =
1

(2π)N/2|Σn|1/2
e−

1
2
a>n Σ−1

n an , (5)

where Σn is the N ×N covariance matrix, i.e., an ∼ N (0,Σn).
The symbol gt−1 ∈ RN×1 is a vector defined as

gt−1 = [g1,t−1 g2,t−1 · · · gN,t−1]> , (6)

where

gn,t−1 =
1

1 + e−xn,t−1
(7)

is a nonlinear function of the state of the nth gene at time instant
t− 1, and ut ∈ RN×1 is a noise vector, which we assume to be zero
mean Gaussian with a covariance matrix σ2

uI , i.e., ut ∼ N (0, σ2
uI),

with I denoting the identity matrix. The vectors ut are independent
over time.

At each time instant t, we have measurements of all the genes.
The observation model is given by [16]

yt = xt + vt, (8)

where yt ∈ RN×1, is the measurement vector and vt ∈ RN×1

is a measurement noise vector, which is assumed to be zero mean
Gaussian with a covariance matrix σ2

vI .
Given a set of measurements y1:T (where the notation y1:T

signifies {y1, y2, · · · , yT }), the primary objective is to jointly
estimate the gene expressions, XT or x1:T , and the values of the
interacting coefficients in matrix A. In solving the problem, for
simplicity in the presentation, we assume that the variances σ2

u and
σ2
v are known. If they are unknown, the proposed method can readily

be replicated.

3. PROPOSED METHOD

We formulated the problem in a state-space form. The problem
is nonlinear because the matrix A is unknown. Towards solving
it, one can invoke one of the available methods for processing
of nonlinear state-space models. Here, we adopt the particle
filtering methodology [18, 19] that provides an approximation of
the joint posterior distribution of the state given the measurements.
This approximation is recursively obtained by means of a
random measure composed of particles generated from a proposal
distribution and weights assigned to the particles. With the particles
and the corresponding weights, one can straightforwardly calculate
point estimates of the state.

The main concern of traditional PFs is that their performance
suffers with the increase of dimensionality of the system. The
generation of significant particles in high-dimensional systems
becomes extremely challenging to the point that the performance
of the PF becomes unacceptable in such scenarios. The problem
at hand can involve many genes and therefore the applicability of
standard particle filtering becomes questionable.

We propose to use a bank of PFs, where each filter is assigned
to track a separate gene and estimate one row of the matrix A.
Splitting the overall state-space in subspaces and tackling each of
them with a different PF results in a very efficient scheme since
the dimensionality of the problem addressed by each individual PF
becomes feasible [26, 27]. This is the main idea followed by the
multiple particle filters (MPFs). It is important to note that since the
genes interact, the filters need to cooperate and communicate some
information for correct functioning of the overall scheme. Different
strategies have been explored for communication but for simplicity
here we adopt a scheme where estimates of the unknowns are shared
[27].

More specifically, the problem is split into N identical
subproblems. Before we proceed, we provide with some notation
related to the state of the nth gene at time instant t−1. Let us define

x̃n,t−1 = [xn,2 xn,3 · · · xn,t−1]>, (9)

ũn,t−1 = [un,2 un,3 · · · un,t−1]>, (10)

G>t−2 = [g1 g2 · · · gt−2] , (11)

where x̃n,t−1 ∈ R(t−2)×1 represents the time series of the
expressions of the nth gene from time instant 2 to t− 1, ũn,t−1 the
corresponding state noise sequence and Gt−2 ∈ R(t−2)×N contains
the necessary information about the function that drives the system.
Then, we can write

x̃n,t−1 = Gt−2an + ũn,t−1. (12)

The nth PF addresses the joint estimation of xn,t and an. For
the expression of the nth gene at t, we have

xn,t = g>t−1an + un,t, (13)

and we want to determine the posterior distribution of xn,t given the
measurement yn,t, and the past values of all the genes Xt−1, i.e.,
p(xn,t|Xt−1, yn,t). It is obtained from

p(xn,t|Xt−1, yn,t) ∝ p(yn,t|xn,t)p(xn,t|Xt−1)

= p(yn,t|xn,t)

∫
p(xn,t|an, Xt−1)p(an|Xt−1)dan. (14)
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First we obtain p(an|Xt−1), for which we write

p(an|Xt−1) ∝ p(an)

t−1∏
k=2

p(xn,k|an, xk−1), (15)

where p(an) is given by (5) and p(xn,k|an, xk−1) is given by,

p(xn,k|an, xk−1) = N
(
g>k−1an, σ

2
u

)
. (16)

We readily deduce that

p(an|Xt−1) = N (ηn,t−1, Cn,t−1) , (17)

where

ηn,t−1 =
1

σ2
u

Cn,t−1G
>
t−2x̃n,t−1, (18)

Cn,t−1 =

(
Σ−1

n +
1

σ2
u

G>t−2Gt−2

)−1

. (19)

Next we integrate out an by using (14). Since

p(xn,t|an, Xt−1) = N
(
g>t−1an, σ

2
u

)
, (20)

we immediately obtain

p(xn,t|Xt−1) = N (νn,t, ξn,t) , (21)

where

νn,t = g>t−1ηn,t−1, (22)

ξn,t = σ2
u + g>t−1Cn,t−1gt−1. (23)

At last, we obtain p(xn,t|Xt−1, yn,t) from (14). Since

p(yn,t|xn,t) = N (xn,t, σ
2
v), (24)

we have

p(xn,t|Xt−1, yn,t) = N (λn,t, ψn,t), (25)

where

λn,t =
ξn,t

ξn,t + σ2
v

yn,t +
σ2
v

ξn,t + σ2
v

νn,t, (26)

ψn,t =
σ2
vξn,t

σ2
v + ξn,t

. (27)

Now we are ready to apply the particle filtering algorithm.
Suppose that at time t− 1, the nth PF has a random measure

χn,t−1 = {x(m)
n,t−1, w

(m)
n,t−1}

M
m=1, (28)

where x(m)
n,t−1 are the particles, w(m)

n,t−1 are their respective weights,
andM is the total number of particles. Furthermore, we also assume
that this filter has an estimate of an given by ηn,t−1. The filter
must also have the estimates of the values of the other genes for time
instant t − 1 obtained by the other PFs. We denote these estimates
X̂−n,t−1 (the subindex −n indicates that the vector contains the
estimates of all the other PFs except of that of the nth filter). The
algorithm proceeds as follows:

1. Generation of particles using (25):

x
(m)
n,t ∼ N (λ

(m)
n,t , ψ

(m)
n,t ), (29)

where λ
(m)
n,t and ψ

(m)
n,t are computed via (26) and (27),

respectively. We note that N (λ
(m)
n,t , ψ

(m)
n,t ) is the optimal

importance function. We also reiterate that in order to obtain
the parameters of the distribution one will need the estimates
from the other filters, X̂−n,t−1.

2. Computation of a prediction or estimate of the state of the
gene, ̂̂xn,t, and transmission to the other filters.

3. Calculation of weights according to [18]:

w̃
(m)
n,t ∝ p(yn,t | X(m)

n,t−1,
̂̂
X−n,t−1)

=
1√

2π(σ2
v + ξ

(m)
n,t )

exp

−
(
yn,t − ν(m)

n,t

)2

2(σ2
v + ξ

(m)
n,t )


(30)

4. Normalization of weights: w(m)
n,t =

w̃
(m)
n,t∑M

j=1 w̃
(j)
n,t

5. Estimation of the gene state, x̂n,t =
∑M

m=1 w
(m)
n,t x

(m)
n,t , and

transmission to the other filters.

6. Resampling.

At the end of this process one obtains the random measure
χn,t, n = 1, · · · , N that allows for approximation of the marginal
posteriors

p(xn,t | yn,1:t) ≈ pM (xn,t | yn,1:t)

=
∑M

m=1 w
(m)
n,t δ(xn,t − x(m)

n,t ).
(31)

4. SIMULATION RESULTS

We applied the proposed approach to the setup discussed in [22].
The gene network consisted of 8 genes whose expression was
characterized by the model given in (2), where the matrix A was
the one shown on the next page. The data were generated for 40
time instants and the variance of the noises were σ2

u = 10−4 and
σ2
v = 10−4. The prior of each gene at each filter was Gaussian

with zero mean and variance 10, and the prior of the an vectors was
Gaussian with zero mean and covariance matrix 50 I .

We compared the proposed MPF algorithm that used 8 filters
(one per gene) and M = 75 particles per filter with the standard PF
(SPF) that employed only one filter tracking a state of dimension 8
(8 genes at once) with a total of 2000 particles. We note that the SPF
was using almost three times as many particles as the MPF. Figure
1 shows the evolution of the expression of one of the genes at one
particular run and the estimates obtained by both filters. It is clear
that the SPF cannot track properly. However, the MPF shows a very
good agreement with the true trajectory.

Figure 2 displays histograms corresponding to means of the
marginal distributions of the coefficients (see (17)) obtained in the
last step of the MPF for one of the genes. The results reveal a good
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A =



0 0 0 .6 .7 0 1.9 2.9
−.1 0 0 3.5 0 −2.1 0 3.4
−4.4 .9 −1.7 −.3 3.4 0 1.7 0

0 .5 2.8 −3.7 .9 0 0 −3.1
0 .2 0 −2.6 −3.2 −.1 −.5 4
−.5 −1.8 0 3.4 1.4 1.1 0 −1.7
−.8 0 0 −3 1.1 .4 0 0
−.3 0 −1 0 .1 0 0 2.2


.

Fig. 1. State estimates of a particular gene in one specific run of
the SPF and MPF methods. The blue dash-dot line shows the true
evolution.

performance of the algorithm even though the number of particles is
rather low.

Finally, we obtained the mean square error (MSE) of the
methods for estimation of some of the gene expressions averaged
over 50 runs. Figure 3 illustrates the poor performance of the SPF
when dealing with all the genes at the same time. The performance
of the MPF remains superior because of the strategy based on
splitting the system into low-dimensional ones. We reiterate that the
SPF uses more than three times the total number of particles used by
the MPF. We also observe that for some of the genes the MPF needs
more time steps to achieve good performance. In our experiments,
the MSE became very small in less than 10 time instants.

5. CONCLUSION

In this paper we introduce a new efficient particle filter method for
estimating the time series of gene expressions and identification of
the matrix whose elements represent the interaction coefficients and
that defines the gene network. The method uses as many filters as
genes in the network and each of them operates using the marginal
posterior distribution for optimal sampling of the particles. Under
this strategy the coefficient matrix is marginalized and there is no
need to produce particles for the coefficients. The numerical results
show a clear advantage of the proposed approach when compared
to the standard particle filter that uses only one filter to track all the
genes.

Fig. 2. Histograms for some of the coefficients of interactions
corresponding to gene 7 in one specific run. The red stars at the
bottom mark the true values of the interactions.
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