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ABSTRACT

In the literature of machine learning, a class of unsupervised
approaches is based on Dirichlet process mixture models. These
approaches fall into the category of nonparametric Bayesian
methods, and they find a wide range of applications including in
biology, computer science, engineering, and finance. An important
assumption of the Dirichlet process mixture models is that the data
are exchangeable. This is a restriction for many types of data
whose structures vary over time or space or some other independent
variables. In this paper, we address generative models that remove
the restriction of exchangeability of the Dirichlet process model,
which allows for creation of mixtures with time-varying structures.
We also address how these models can be applied to sequential
estimation of clusters.

Index Terms— machine learning, Dirichlet processes, time-
varying clustering, Chinese restaurant processes with finite
capacities

1. INTRODUCTION

A very important task in machine learning is the clustering of
observed data [1]. The process of clustering amounts to grouping the
data according to their features. A standard approach to clustering
is to represent the data according to a mixture distribution where
the number of mixing components (mixands) is known beforehand.
Each mixand is a representative of a cluster. Typically the parameters
of the mixands are unknown, and they have to be estimated during
the clustering. A well-known approach to solving this problem is the
expectation-maximization (EM) algorithm [2].

When the number of clusters is unknown, one can proceed with
hypothesizing that the number of classes is k = 1, 2, · · · ,Kmax.
Upon completing the clustering under each of these hypotheses, one
follows up with a model selection and chooses the “best” model of
the Kmax models. There are also approaches where the maximum
number of classes is not predefined and one employs Markov chain
Monte Carlo (MCMC) sampling. Well known methods in this
category are the reversible jump MCMC sampling [3] and the birth-
and-death MCMC sampling [4].

An alternative to these approaches is to use models that are based
on Dirichlet process mixtures (DPMs). The DP has been widely used
in Bayesian modeling [5], and particularly, as a basis for forming
DPMs [6]. DPMs have become quite popular for data clustering in a
wide range of disciplines. An early work on their use is presented in
[7].
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An important assumption of these models is that the data are
exchangeable. This entails that there is no change in the structures
of the data over time or space or some other independent variables.
In reality, many data do not satisfy this assumption. Furthermore,
in many settings one wants to process the data sequentially and
capture from them how they vary with time. In this paper we address
generative models that remove the restriction of exchangeability
that the DP model imposes on them. We investigate the first two
moments of these processes over time and show how one can infer
their parameter(s). We explain them by using the metaphor of a
Chinese restaurant process (CRP) with finite capacity.

The paper is organized as follows. In the next section we provide
a brief background of DPs. In Section 3, we present generative
models of processes that are derived from DPs. In the following
section, we investigate the first two moments of these processes as a
function of time. In Section 5, we propose methods for estimating
the unknown parameter(s) of the process(es). We conclude the paper
with final remarks in Section 6.

2. BACKGROUND

A DP is an extension of the Dirichlet distribution and its
realizations represent probability distributions. A DP is defined by a
concentration parameter α and a base measure H [5].

In the sequel, for easier explanation of the addressed processes,
we use the CRP metaphor, and thus, we use it to present the DP.
First, suppose that there is a restaurant where customers come and
stay for unlimited time. Customers are coming to the restaurant one
at a time and are seated according to a specific random mechanism.
At each table a different dish is served. In our setting, the customers
are represented by data samples and the dishes served at the tables
are the classes of the data.

The process starts with the arrival of the first customer. This
customer is always seated at table 1 (class 1). Then a “dish” θ1 is
drawn for this customer from H . The following customer is seated
at table 1 or table 2 with probabilities

p2,1 =
1

1 + α
, (1)

p2,2 =
α

1 + α
. (2)

Once a customer is seated at a new table, a new dish that is served on
that table is drawn from the base distribution. We note that each table
has its own dish, represented by θi. Thus, each table corresponds to
a different class, and each table has its own dish (which are actually
the parameters of the class).
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The following customers are seated according to a probability
mass function defined by the occupancy of the tables by the previous
customers. Suppose that when customer n enters the restaurant,
tables 1 to mn−1 are occupied with kn−1,i, i = 1, 2, · · · ,mn−1

customers, respectively. Then the probability of seating the nth
customer at the ith table is

pn,i =
kn−1,i

n− 1 + α
, i = 1, 2, · · · ,mn−1, (3)

and the probability of seating that customer at a new table,mn−1+1,
is

pn,mn−1+1 =
α

n− 1 + α
. (4)

Thus,

mn =

{
mn−1 + 1, with probability α

n−1+α
,

mn−1, otherwise
. (5)

In summary, each table represents a different class, and the
customers are observations which are assigned to particular classes.

An important feature of DPs is that their data are exchangeable.
Also, the number of tables where customers are seated according
to them is not limited. In fact, with more customers coming to a
restaurant, this number only grows. This process has been used for
classification in many disciplines and has been well studied.

In many real-world problems, the number of classes within
periods of times varies. We would like to study problems with this
kind of dynamics of the data. For example, one might be interested
in a sequential processing of signals, where the classification of the
signals is time dependent. One approach to this problem is by way
of epochs. The processes that we study in this paper belong to this
class. An early work on this idea in the context of dynamic topic
modeling is [8]. In [9], the authors study evolutionary clustering over
epochs with the aim of making the clustering parameters smooth
over time. Temporal DP models are studied in [10]. There, the
exchangeability of the data is only valid within an epoch. The time-
varying DPs investigated in [11] have the property that at each time
the random distribution follows a DP.

Another class of approaches is known as dependent DPs [12].
These processes at any time instant with n marginally represent
DPs. They have been used for joint estimation of the parameters
of the process and the evolution of classes with time [13]. Time
sensitive DPs are yet another type of processes that aim at capturing
time-dependent clustering [14]. They use temporal weights for the
clusters that depend on the cluster history.

3. NEW TYPES OF PROCESSES

Here we describe the new processes by way of modified CRPs.
First, consider a restaurant where the customers stay in the restaurant
for a limited time. More specifically, let each customer stay in
the restaurant for N time units. Once the customer’s time in the
restaurant expires, the customer leaves the restaurant. Now suppose
that the first N customers come to the restaurant and are seated in
the usual way according to the probabilities defined by (3) and (4).
After the restaurant fills with N customers, the first customer who
entered the restaurant, leaves it, and a new customer is seated. Then
the second customer who entered the restaurant leaves and a new
customer comes in and so on. For the (N+1)st customer, the seating
probabilities are given by

pN+1,i =

{
kN,i

N−1+α
, i = 1, · · · ,mN ,

α
N−1+α

, i = mN + 1,
(6)

where kN,i is the number of customers that sit at table i at time N
and after the first customer left the restaurant. The symbolmN is the
total number of tables that have been occupied since the restaurant
was opened. If we denote with zn the table assigned to the nth
customer, we can write

kN,i =

N∑
j=2

δzj=i, (7)

where

δzj=i =

{
1, zj = i,
0, otherwise

. (8)

In general, for n > N the seating probabilities are given by

pn,i =

{
kn−1,i

N−1+α
, i = 1, · · · ,mn−1,

α
N−1+α

, i = mn−1 + 1
, (9)

where

kn−1,i =

n−1∑
j=n−N+1

δzj=i. (10)

We note that for n ≥ N , we also have

mn−1∑
i=1

kn−1,i = N − 1, (11)

where mn−1 is the total number of tables that have been occupied
by time n− 1 and since the opening of the restaurant. However, we
point out that at any time after N , the maximum number of tables
that can be occupied is N .

Note that the above process can be viewed as a CRP with a finite
capacity (with N tables only, CRPFC(N )), i.e., a restaurant that can
serve a finite number of customers (N ). As the process evolves,
some of the tables that have been occupied in the past become vacant
and ready for new customers who will be served with new dishes.
From here on, we use this interpretation.

A more complicated process arises when the parameter α is
time-varying. Thus, let α now be denoted by αn. Basically,
everything above remains the same except that the seating
probabilities become

pn,i =

{
kn−1,i

N−1+αn
, i = 1, · · · ,mn−1,

αn
N−1+αn

, i = mn−1 + 1
. (12)

The dynamics of αn allow for modeling periods where the number
of currently occupied tables becomes small or large. When αn
becomes small, new tables are rarely assigned, and vice versa. We
complete this model by describing the time variation of αn by

αn = g(αn−1, un), (13)

where αn > 0, ∀n, and g(αn−1, un) is a function of the previous
value of α and some perturbation un with known distribution.

4. MOMENTS OF THE PROCESSES

First we discuss processes with constant α and then processes with
time-varying α.
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4.1. Processes with constant α

We can make the following claim:
Claim: The mean of occupied tables in a restaurant with

a capacity of N tables for n = 1, 2, · · · , N can be obtained
recursively from

µn = µn−1 +
α

n− 1 + α
, (14)

where µ1 = 1, and the variance of occupied tables by

σ2
n = σ2

n−1 +
(n− 1)α

(n− 1 + α)2
, (15)

where σ2
1 = 0.

The proof of the above claim is rather simple. First we prove the
recursive equation for the mean. We start with µ1 = 1. Define the
random Bernoulli variable Xn, n = 2, 3, · · · , N whose probability
mass function is given by

p(xn) =

{ α
n−1+α

, x = 1
n−1

n−1+α
, x = 0

. (16)

We recognize that Xn represents the event that a new table is
occupied (Xn = 1), or a customer is seated at one of already
occupied tables (Xn = 0). Now, for the nth time instant we write
the recursion

µn = µn−1P (Xn = 0) + (µn−1 + 1)P (Xn = 1). (17)

Upon the substitution of the probabilities for Xn = 0 and Xn = 1,
we obtain (14).

For the variance, we have

σ2
n = E(Yn − µn)2, (18)

where Yn is the number of occupied tables after n customers entered
the restaurant. Since Yn = Yn−1 +Xn and with (14), we write

σ2
n = E (Yn − µn)2

= E
(
Yn−1 +Xn − µn−1 −

α

n− 1 + α

)2

= E (Yn−1 − µn−1)2 + E
(
Xn −

α

n− 1 + α

)2

= σ2
n−1 + var(Xn) (19)

= σ2
n−1 +

α

(n− 1 + α)

(
1− α

(n− 1 + α)

)
= σ2

n−1 +
(n− 1)α

(n− 1 + α)2
. (20)

After the arrival of the N th customer, the (N + 1)st customer
replaces the first customer. We expect that at some time, the mean
value and the variance of the number of occupied tables reaches a
steady value, and the process of occupied tables is stationary. The
condition for stationarity is that the average decrease in number of
tables due to the departure of a customer is given by

∆µ =
α

N − 1 + α
. (21)

The reason is that every new customer contributes on average an
increase in number of tables given by (21).

Fig. 1. Evolutions of the process means for different values of α.
Solid lines: simulated means of the CRPFC (100), dash-dot lines:
theoretical means of the CRPFC (100), dotted lines: theoretical
means of the CRP, dashed lines: simulated means of the CRP.

We prove stationarity by induction. When N = 1, it is trivial to
show that the process is stationary. In fact, then the mean is always
equal to one and the variance is zero. Suppose now that a restaurant
with N − 1 tables has achieved stationarity for some n. Then we
have µn = µ(N−1), where µ(N−1) is the stationary mean of the
process with a capacity of N − 1 tables. Now, at time n + 1, we
decide to increase the capacity of the restaurant by one table so that
it now becomes equal to N . At that time we also extend the time
duration for the customers to stay in the restaurant, which means
that no customers leave the restaurant at n+ 1. Then we can write

Yn+1 = Yn +Xn+1, (22)

where Yn is the number of customers in the restaurant at time n and
Xn+1 has the same meaning as before. Thus,

µn+1 = µ(N−1) + E(Xn+1)

= µ(N−1) +
α

N − 1 + α
. (23)

Thus, the new mean is not a function of n, and therefore the process
with N tables has also a stationary mean. The argument is similar in
showing that the variance is not a function of n once we increase the
capacity of the restaurant by one table. Furthermore, this argument
suggests that in a process with N tables, the stationarity is achieved
at n = N . Finally, the stationary values of the mean and variance of
this process are given by

µ(N) = α

N∑
k=1

1

k − 1 + α
, (24)

σ2(N) = α

N∑
k=1

k − 1

(k − 1 + α)2
. (25)

In Fig. 1, we present the evolution of the means of several
processes with n (with parameters α = 1, α = 5, and α = 10,
respectively). There we also see the evolution of the means of the
CRP with the same respective parameters α. Similarly, in Fig. 2,
we display the evolution of the variance with n for processes with
parameters α = 1, α = 5, and α = 10, respectively. The statistics
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Fig. 2. Evolutions of process variances for different values of α.
Solid lines: simulated variances of the CRPFC (100), dash-dot lines:
theoretical variances of the CRPFC (100), dotted lines: theoretical
variances of the CRP, dashed lines: simulated variances of the CRP.

were obtained from 1000 realizations of each process. Figures 1 and
2 also show the theoretical means and variances. From the figures
we can clearly see how the mean and variance of the CRPFC settle
at a steady value as soon as there are N customers in the restaurant.

4.2. Processes with time-varying α

We can derive similar expressions for the means and variances of
the processes when α varies with time. It is not difficult to show that
now for n = 2, 3, · · · , N , we have

µn = µn−1 +
αn

n− 1 + αn
, (26)

where µ1 = 1, and the variance of occupied tables is given by

σ2
n = σ2

n−1 +
(n− 1)αn

(n− 1 + αn)2
, (27)

where σ2
1 = 0. For n > N , we have

Yn = Yn−1 −Qn +Xn, (28)

where Qn is a Bernoulli random variable with P (Qn = 1) = pn
and where Qn takes the value of one if the customer who leaves the
restaurant was sitting alone before leaving. Then we can write

µn = µn−1 − pn +
αn

N − 1 + αn
. (29)

For the variance, we have

σ2
n = E(Yn − µn)2

= E
(
Yn−1 −Qn +Xn − µn−1 − pn +

αn
N − 1 + α

)2

= σ2
n−1 − 2 cov(Yn−1, Qn) + pn(1− pn)

+
(N − 1)αn

(N − 1 + αn)2
, (30)

where cov(Yn−1, Qn) is the covariance between the random
variables Yn−1 and Qn, i.e.,

cov(Yn−1, Qn) = E ((Yn−1 − µn−1) (Qn − pn)) . (31)

In Fig. 3, we show the evolution of the means of two process
with n and where N = 100. The parameter α of the first process
(solid line) abruptly changes its value at two time instants, at n =
200 and n = 500. At n = 200 it increases its value from α = 2
to α = 8. The second change is from α = 8 back to α = 2.
The other process (dashed line) changes its value of α in a similar
way at the same time instants, but the values are now α = 5 and
α = 15. In Fig. 4, we plotted the evolution of the variance of the
same processes (with corresponding solid and dashed lines). All the
results were obtained from 500 realizations.

Fig. 3. Evolutions of means of two processes with time-varying α
parameters. See text for explanation.

Fig. 4. Evolutions of variances of two processes with time-varying
α parameters. See text for explanation.

5. INFERENCE

5.1. Processes with constant α

Here we address the estimation of α from a sequence of labels zn
(table assignments). We assume that the estimation is from labels
after the restaurant has already at leastN seated customers. Suppose
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that we have available J observations. For the likelihood we write

p(z1:J |α) =

J∏
j=1

α
δzj=newk

δzj=i

i,j

N − 1 + α
, (32)

where δzj=new = 1 if the jth customer is assigned a new table and
is zero otherwise, and ki,j is the number of customers sitting on
table i when the jth observation is made. We readily show that the
maximum likelihood (ML) estimate is given by

α̂ =
(N − 1)K

J −K , (33)

where

K =

J∑
j=1

δzj=new. (34)

We see that the sufficient statistic for estimating α is K, the total
number of newly assigned tables in J assignments. The range of
K is K ∈ {0, 1, · · · , J}. For K = 0, we obtain α̂ = 0, and for
K = J , α̂ =∞.

The ML estimate of α is biased. In fact, one can readily show
that its expected value is infinite. Since K is a binomial random
variable with parameters J and α

N−1+α
, we have

E(α̂) =

J∑
k=0

(N − 1)k

J − k

(
J

k

)(
α

N − 1 + α

)k (
N − 1

N − 1 + α

)J−k
,

(35)
and the claim immediately follows because the event k = J has a
finite probability and the factor 1/(J − k) in the summation will
force the sum to be infinite.

5.2. Processes with time-varying α

For processes with time-varying α, the estimation of αn is more
challenging. This is a nonlinear problem that can be addressed by
particle filtering [15]. With particle filtering, we aim at tracking
the posterior distribution of αn, given the observations z1:J ≡
{z1, z2, · · · , zJ}, p(αn|z1:J). To that end we use a state space
model, where we represent the state equation by

αn ∼ p(αn|αn−1), (36)

and the observation equation by

zn ∼ p(zn|αn) = Cat(zn−N+1:n−1, αn), (37)

where Cat(·, ·) stands for a Categorical distribution with
probabilities defined by the observations zn−N+1:n−1 and αn
as in (12). With particle filtering we represent the posterior
p(αn−1|z1:n−1) by a random measure composed of particle α(m)

n−1

and weights w(m)
n−1. At time n, if we draw particles from

α(m) ∼ p(αn|α(m)
n−1), (38)

the weights of α(m)
n are computed by

w(m)
n ∝ w

(m)
n−1 Cat(zn−N+1:n−1, α

(m)
n ), (39)

where∝ signifies proportionality. The minimum mean squared error
(MMSE) estimate of αn is obtained from

ŵn =

M∑
m=1

w(m)
n α(m)

n . (40)

Before the next time instant n+1, one may implement resampling so
that the estimate of the time-varying α does not degrade with time.

6. CONCLUSION

In this paper we investigated generative models for sequential
formation of clusters. One can can readily extend these models to
create mixture models with time-varying structures. The variability
of the structures is defined by a concentration parameter and
the “capacity” of the process. We considered models where
the concentration parameters are constant and time-varying. For
processes with constant concentration parameters, we obtained their
maximum likelihood estimates, and for processes with time-varying
concentration parameters, we proposed a particle filtering method
for their tracking.
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