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ABSTRACT
Principal component analysis (PCA) is a tool for dimensional-
ity reduction, feature extraction, and data compression, which
is applied to both real-valued and complex-valued data sets.
For complex data, a modified version of PCA based on widely
linear transformations was shown to be beneficial if the con-
sidered random variables are improper, i.e., in the case of
correlations or power imbalances between real and imaginary
parts. This widely linear approach is formulated in an aug-
mented complex representation in the existing literature. In
this paper, we propose a composite real PCA, which instead
transforms the complex data into a set of real-valued principal
components. This alternative approach is superior in dimen-
sionality reduction due to the finer granularity that is possible
when counting dimensions in the real-valued representation.
Moreover, it can be used to obtain the same results as the aug-
mented complex version at a lower computational complexity.

Index Terms— Composite real representation, dimen-
sionality reduction, improper signals, noncircular, principal
component analysis (PCA).

1. INTRODUCTION

Complex random variables are often implicitly assumed to be
proper [1], which is the case if the real and imaginary parts
are uncorrelated and have the same variance. However, there
are many situations of practical importance in which this re-
quirement is not fulfilled (see, e.g., [2, 3]). Then, the random
variables are called improper, and special attention is needed
when developing methods to process or analyze such signals.

Methods for complex-valued signal processing are often
derived based on existing approaches for real-valued signals.
When transferring such a method to a complex scenario, lin-
ear operations are usually translated to linear operations in the
complex domain. However, whenever at least one improper
signal is present, complex linear operations might not exploit
the full potential of the system, and an extension to so-called
widely linear processing can be beneficial (e.g., [2]).

This also applies to principal component analysis (PCA),
which has become a standard tool for dimensionality reduc-
tion, feature extraction, and data compression. Even though
it was originally derived for real-valued data sets or sets of
real-valued random variables in [4, 5], it is straightforward

to apply PCA as a (strictly) linear rank reduction technique
for complex random vectors (e.g., [2, 6, 7]). A modified lin-
ear rank reduction for improper signals was proposed in [8].
However, a better concentration of the signal variance in the
first few principal components is achieved if a widely linear
transformation is used to perform the rank reduction [2, 6].
For extensions to this widely linear PCA, see, e.g., [9].

A mapping is called widely linear if it is a linear func-
tion of the signal and of the complex conjugate of the sig-
nal [10]. As a convenient way to write such mappings, a so-
called augmented complex representation has been favored by
many researchers (e.g., [2, 3, 11]). However, since a widely
linear mapping is equivalent to a linear function of the real
and imaginary parts of the complex signal, an alternative de-
scription of widely linear mappings can be given by introduc-
ing the so-called composite real representation (e.g., [11,12]),
where the real and imaginary parts are stacked in a real-valued
vector with twice the dimension of the complex signal. Then,
a signal processing method for a complex scenario can be ob-
tained by applying an existing algorithm for real-valued set-
tings to the composite real representation. This possibility has
recently been exploited in many research papers (e.g., in the
context of signal processing for communications in [12–15]).

In this paper, we propose a new PCA method by applying
the traditional real-valued PCA to composite real represen-
tations of complex signals. After summarizing fundamentals
of the augmented complex and composite real representations
in Section 2 and revisiting various existing linear and widely
linear versions of PCA in Section 3, we establish this new
composite real PCA in Section 4.

Depending on the data set under consideration, the com-
posite real PCA either achieves the same performance as the
widely linear PCA using the augmented complex formulation
(see Section 5) or it even outperforms the augmented complex
counterpart in terms of dimensionality reduction potential. As
discussed in detail by means of a numerical example in Sec-
tion 6, the latter is the case whenever the composite real di-
mensionality reduction leads to an odd number of real-valued
principal components. Especially if a maximally improper
(e.g., real-valued) signal contributes to the complex signal un-
der consideration, the composite real PCA is beneficial. An
additional advantage of the composite real PCA in terms of
computational complexity is discussed in Section 7.
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2. MATHEMATICAL PRELIMINARIES

Let x˜ = xR + jxI ∈ CN with xR,xI ∈ RN be a complex
random vector (tildes •˜ denote complex quantities). Then,

x =

[
x
x̃˜∗
]
∈ C2N and x̌ =

[
xR
xI

]
∈ R2N (1)

are its augmented complex and its composite real represen-
tation, respectively. For the ease of notation, we assume all
random vectors to be zero-mean without loss of generality.

The second-order statistical properties of a complex ran-
dom vector x˜ are characterized by the conventional covari-
ance matrix C˜ x˜ = E[x˜x˜H] and the so-called pseudocovari-

ance matrix C̃˜ x˜ = E[x˜x˜T] [1]. If the pseudocovariance van-

ishes, i.e., C̃˜ x˜ = 0, the random vector is called proper.
As an alternative to considering these two matrices, a

complete second-order characterization is also obtained by
considering either the augmented covariance matrix [2]

C˜ x = E
[
xxH

]
=

[
C˜ x˜ C̃˜ x˜
C̃˜ ∗x˜ C˜ ∗x˜

]
∈ C2N×2N (2)

or the composite real covariance matrix (e.g., [2, 12])

Cx̌ = E
[
x̌x̌T

]
=

[
CxR CxR,xI

CT
xR,xI

CxI

]
∈ R2N×2N (3)

where CxR,xI = E[xRx
T
I ] is the cross-covariance matrix be-

tween the real and imaginary parts xR and xI.
A complex mapping f˜ : x˜ 7→ f˜(x˜) is called widely linear

if it can be written in the form (e.g., [2, 11])

f˜(x˜) = A˜ Lx˜ +A˜ CLx˜∗ (4)

where the subscripts of the factorsA˜ L andA˜ CL stand for lin-
ear and conjugate linear, respectively. This is equivalent to a
linear real-valued mapping f̌ : x̌ 7→ f̌(x̌) = Ax̌ applied to
the composite real representation of x˜, where [12]

A =

[
<
(
A˜ L
)
−=

(
A˜ L
)

=
(
A˜ L
)
<
(
A˜ L
) ]+[< (A˜ CL

)
=
(
A˜ CL

)
=
(
A˜ CL

)
−<

(
A˜ CL

)] . (5)

3. LINEAR AND WIDELY LINEAR PCA

In [4], PCA was formulated as a minimization of the mean
squared error between the original set of random variables and
their orthogonal projections onto a subspace. The following
considerations are instead based on the method of [5], which
is known to lead to equivalent results (e.g., [16, Ch. 6]).

Given a vector x˜ = [x˜1, . . . , x˜N ]T of correlated random
variables, the goal of PCA is to find a mapping f˜ that extracts
a vector of uncorrelated random variables [ζ˜1, . . . , ζ˜N ]T =

ζ˜ = f˜(x˜) such that as much randomness as possible is cov-
ered by the first ` variables ζ˜1, . . . , ζ˜` for any ` ≤ N . The
various versions of PCA that are considered in this section
differ in the assumptions on the vector x˜ and the mapping f˜.

3.1. Linear PCA for real-valued random vectors

Let us first consider a real-valued random vector x ∈ RN .
The classical PCA for this setting assumes a linear mapping
f : x 7→ Ax with A ∈ RN×N [4, 5]. Nonlinear extensions
exist in the literature (e.g., [16]), but are beyond the scope of
this paper. The linear version can be written as

max
A

∑̀
k=1

E
[
ξ2
k

]
s.t. E [ξiξj ] = 0 ∀(i, j) : i 6= j (6)

for all ` ≤ N , where ξk is the kth entry of ξ = Ax. Concep-
tually, this is a multiobjective optimization (different objec-
tive function for each choice of `), but it turns out that there
exists a solution that is simultaneously optimal for all ` ≤ N .

Let UΛUT = Cx be the ordered eigenvalue decompo-
sition of the covariance matrix of x such that the entries λi
of the diagonal matrix Λ are in descending order. The opti-
mal linear mapping is then found by choosingA = UT (e.g.,
[16]). Due to Cξ = ACxA

T = Λ, this yields E[ξiξj ] = λi
if i = j and zero otherwise. The sum of the first ` variances∑`

k=1 λk is maximized for any choice of ` due to the order-
ing of the eigenvalue matrix Λ. Optimality of this solution
can formally be shown, e.g., by successive optimization of the
rows ofA (e.g., [16]) or via majorization theory (e.g., [2]).

3.2. Linear PCA for complex random vectors

A straightforward extension to complex random vectors x˜ is
obtained by restricting the mapping f˜ to be (strictly) linear
(e.g., [2, 6, 7]), i.e., to demandA˜ CL = 0 in (4). We then have

max
A˜ L

∑̀
k=1

E
[
|ζ˜k|2

]
s.t. E

[
ζ˜iζ˜∗j

]
= 0 ∀(i, j) : i 6= j (7)

for all ` ≤ N , where ζ˜k is the kth component of ζ˜ = A˜ Lx˜.
The optimal solution is A˜ L = U˜ H where U˜ is the unitary
modal matrix from the ordered eigenvalue decomposition
U˜ΦU˜ H = C˜ x˜ with decreasing diagonal elements ϕk [2].

3.3. Widely linear PCA for complex random vectors

A relaxed version of the optimization in the previous Subsec-
tion is obtained by allowing f˜ to be widely linear. In [2, 6], it
was shown that for an improper complex random vector x˜, a
better concentration of the variance in the first principal com-
ponents can be achieved with the widely linear formulation

max
A˜ L,A˜ CL

∑̀
k=1

E
[
|ζ˜k|2

]
s.t. E

[
ζ
i
ζH

j

]
=0 ∀(i, j) : i 6= j (8)

for all ` ≤ N , where ζ˜k is the kth entry of ζ˜ = A˜ Lx˜+A˜ CLx˜∗.Due to the constraint, E[ζ˜iζ˜∗j ] = 0 = E[ζ˜iζ˜j ] for i 6= j.
The optimal solution can be obtained via the augmented

eigenvalue decomposition U Ψ UH = C˜ x where

U =

[
U˜ L U˜ CL
U˜ ∗CL U˜ ∗L

]
and Ψ =

1

2

[
Ψ1 + Ψ2 Ψ1 − Ψ2

Ψ1 − Ψ2 Ψ1 + Ψ2

]
. (9)
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Here, Ψ1 = diagN
k=1(ψ2k−1) and Ψ2 = diagN

k=1(ψ2k),
where ψ1, . . . , ψ2N are the eigenvalues of the augmented co-
variance matrix C˜ x sorted in descending order [2, 6]. U is a
so-called widely unitary matrix satisfying U UH = UHU =
I2N . The optimal solution of (8) is then given by A˜ L = U˜ H

L
and A˜ CL = U˜ T

CL, and the variance and pseudovariance of the
kth principal component are given by [2, 6]

E
[
|ζ˜k|2

]
=
ψ2k−1 + ψ2k

2
, E

[
ζ˜2
k

]
=
ψ2k−1 − ψ2k

2
. (10)

Note that the augmented eigenvalue matrix Ψ is generally
not diagonal [2], which seems a bit counterintuitive at first
glance. We will later see that the composite real formulation
allows a more intuitive derivation of the widely linear PCA.

4. COMPOSITE REAL PCA

After this summary of existing versions of PCA, we now pro-
pose a composite real PCA of complex random vectors. Even
though the basic idea of the composite real PCA is rather sim-
ple, the subsequent analysis shows that this new approach has
significant advantages compared to the existing ones.

Consider the composite real representation x̌ ∈ R2N of a
complex random vector x˜ ∈ CN as given in (1). By applying
the real-valued PCA from Section 3.1 to x̌, we obtain

max
A

L∑
k=1

E
[
ξ2
k

]
s.t. E [ξiξj ] = 0 ∀(i, j) : i 6= j (11)

for all L ≤ 2N , where ξk is the kth entry of ξ = Ax̌ ∈ R2N .
Note that the vector ξ now contains 2N elements, i.e., we
have transformed the N -dimensional complex random vec-
tor x˜ into a set of 2N real-valued principal components
ξ1, . . . , ξ2N instead of intoN complex principal components.

From Section 3.1, it is clear that the solution is given
by A = UT ∈ R2N×2N , where the orthogonal matrix U
is the modal matrix from the ordered eigenvalue decomposi-
tion UΛUT = Cx̌. The variances E[ξ2

1 ], . . . ,E[ξ2
2N ] of the

real-valued principal components are equal to the eigenvalues
λ1, . . . , λ2N , which are arranged in descending order.

Note that we have used a conventional eigenvalue decom-
position of a real symmetric matrix, which is conceptually
easier than the augmented eigenvalue decomposition in the
augmented complex approach from [2, 6] (see Section 3.3).

5. COMPARISON TO COMPLEX VERSIONS OF PCA

We compare the real-valued principal components to the com-
plex principal components obtained using the widely linear
PCA (Section 3.3) or the complex linear PCA (Section 3.2).

5.1. Comparison to the widely linear PCA

As each of the N complex principal components can be rep-
resented as ζ˜k = ζk,R + j ζk,I, we arrange the 2N real-valued

principal components in pairs for the sake of comparison.
Thus, let ξ˜k = ξ2k−1 + j ξ2k for k = 1, . . . , N . Since the
real-valued principal components are uncorrelated, we have

E
[
|ξ˜k|2

]
= E

[
ξ2
2k−1

]
+ E

[
ξ2
2k

]
= λ2k−1 + λ2k (12)

E
[
ξ˜2
k

]
= E

[
ξ2
2k−1

]
+ 2 j E [ξ2k−1ξ2k] + j2 E

[
ξ2
2k

]
= λ2k−1 − λ2k (13)

and E[ξ˜iξ˜∗j ] = 0 = E[ξ˜iξ˜j ] for i 6= j.
According to [2], the ordered eigenvalues λ1, . . . , λ2N

of the composite real covariance matrix Cx̌ and the ordered
eigenvalues ψ1, . . . , ψ2N of the augmented covariance ma-
trix C˜ x fulfill [ψ1, . . . , ψ2N ] = 2[λ1, . . . , λ2N ] for any com-
plex random vector x˜. Thus, comparing (10) to (12) and (13)
shows that ξ˜1, . . . , ξ˜N and the complex principal components
ζ˜1, . . . , ζ˜N share the same second-order statistical properties.

Thus, by restricting L in (11) to even numbers, we obtain
an alternative derivation of the widely linear PCA from Sec-
tion 3.3, without making use of an augmented eigenvalue de-
composition. Note that the equivalence of the two approaches
is plausible since a complex widely linear transformation cor-
responds to a real linear transformation, i.e., equally pow-
erful mappings f˜ are allowed in both cases. This is differ-
ent from complex linear approaches to rank reduction (e.g.,
[7, 8]), which allow only a smaller class of transformations.

However, since there is no need to restrictL to being even,
the composite real PCA is more general than the augmented
complex widely linear PCA. In Section 6, we show that the
increased flexibility obtained by this generalization can lead
to an improved dimensionality reduction capability. Before
doing so, we compare the composite real PCA also to the
complex linear PCA for the sake of a complete picture.

5.2. Comparison to the (strictly) linear PCA

Due to the equivalence of the widely linear PCA in the aug-
mented complex representation and the composite real PCA
with even values of L, the following derivation delivers an
alternative proof of the observations in [2, 6]. Therein, it was
shown that the widely linear version outperforms the (strictly)
linear PCA in case of improper complex random vectors.

Any composite real covariance matrix can be written as

Cx̌ = P̀ + Ń (14)

=
1

2

[<(C˜ x˜) −=(C˜ x˜)

=(C˜ x˜) <(C˜ x˜)

]
+

1

2

[
<(C̃˜ x˜) =(C̃˜ x˜)

=(C̃˜ x˜) −<(C̃˜ x˜)

]
[12], where P̀ is a so-called block-skew-circulant (BSC2) ma-
trix (denoted by a grave accent), and Ń is a so-called block-
Hankel-skew-circulant (BHSC2) matrix (denoted by an acute
accent). It can be shown (using [12, Lemma 20]) that P̀ has
the same eigenvalues as the scaled complex covariance matrix
1
2C˜ x˜ , but the multiplicity of each eigenvalue is doubled.

If the complex random vector x˜ is proper, the BHSC2
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component Ń , which is related to the pseudocovariance ma-
trix C̃˜ x˜ , vanishes, so that Cx̌ = P̀ . Then, the ordered eigen-
values λ1, . . . , λ2N fulfill λ2k−1 = λ2k = 1

2ϕk, where ϕk is
the kth largest eigenvalue ofC˜ x˜ . As a consequence, (12) sim-
plifies to E[|ξ˜k|2] = ϕk for proper random vectors x˜, which is
equal to the variance of the kth complex principal component
ζ˜k obtained with the (strictly) linear PCA from Section 3.2.

To study the case where x˜ is improper, we make use of

J̀ =

[
0 −IN
IN 0

]
, J̀

−1
= J̀

T
(15)

for which we have P̀ = J̀
T
P̀ J̀ and Ń = −J̀

T
ŃJ̀ [12,

Lemma 10]. If λ is an eigenvalue of Cx̌, and q is the corre-
sponding eigenvector, i.e., (P̀ + Ń)q = qλ, we have that

(J̀
T
P̀ J̀ − J̀

T
ŃJ̀)q = qλ ⇔ (P̀ −Ń)J̀q = J̀qλ (16)

i.e., P̀ + Ń and P̀ − Ń have the same eigenvalues. Thus,[
P̀ Ń

Ń P̀

]
=

1

2

[
IN IN
IN −IN

][
P̀ + Ń

P̀ − Ń

][
IN IN
IN −IN

]
(17)

has the same eigenvalues as P̀ + Ń = Cx̌, but the multiplic-
ity of each eigenvalue is doubled.

Note that the block-diagonal matrix blockdiag(P̀ , P̀ ) has
the same eigenvalues as the matrix 1

2C˜ x˜ , but with quadrupled
multiplicity. From [17, Ch. 9], we can conclude that the vec-
tor of eigenvalues of blockdiag(P̀ , P̀ ) is majorized by the
vector of eigenvalues [λ′1, . . . , λ

′
4N ] of the matrix in (17), i.e.,

the partial sum of the first K ≤ 4N eigenvalues of the matrix
in (17) is larger than or equal to the respective partial sum for
the block-diagonal matrix with equality for K = 4N .

Thus, the sorted eigenvalues λ1, . . . , λ2N of Cx̌ fulfill∑̀
k=1

(λ2k−1 + λ2k) =
1

2

∑̀
k=1

(λ′4k−3+λ′4k−2+λ′4k−1+λ′4k)

≥ 1

2

∑̀
k=1

4( 1
2ϕk) =

∑̀
k=1

ϕk (18)

where the inequality is due to the majorization. This shows
that the composite real PCA covers a larger share of total vari-
ance with the first 2` real-valued principal components than
the complex linear PCA does with the first ` complex princi-
pal components. Equality holds for proper random vectors x˜and in any case for ` = N .

6. DIMENSIONALITY REDUCTION CAPABILITY

Up to this point, we have seen that the composite real PCA
with even values of L in (11) is equivalent to the widely lin-
ear PCA and outperforms the complex linear PCA. In the fol-
lowing, we turn our attention to cases in which the composite
real PCA even outperforms the augmented complex version
of the widely linear PCA. In particular, we exploit the addi-
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Fig. 1. Composite real PCA (CR), augmented complex widely
linear PCA (WL), and complex linear PCA (L).

tional flexibility of an arbitrary (even or odd) integer L to ob-
tain an improved dimensionality reduction. To demonstrate
the improvement, we use a rather simple example, but the
same effect happens in more complicated scenarios as well.

Consider the complex random vector

x˜ =
∑M

m=1
s˜m + η˜ ∈ CN (19)

where the random vectors s˜1, . . . , s˜M−1 are proper complex,
s˜M is maximally improper, and η˜ ∼ CN (0, σ2IN ) is proper
complex Gaussian noise. Let us assume that s˜m = h˜mb˜m,
where h˜m ∈ CN are constant vectors, b˜1, . . . , b˜M−1 are
proper complex random variables, and b˜M = bM is a real-
valued random variable. In this case, the covariance matrices
of all signals s˜m have rank 1.

We intentionally keep this example as abstract as possi-
ble in order to not limit the discussion to a particular signal
processing application. However, to get an idea where such
a situation might occur, we could think of a communication
system where several single-antenna transmitters send data to
a multiantenna receiver. A received signal x˜ as given in (19)
is then obtained if one transmitter uses a real-valued modula-
tion alphabet (e.g., ASK) while all other users apply proper
complex constellations (e.g., QPSK).

For the following numerical simulation, we assume the
composite real covariance matrix Cx̌ and the augmented
complex covariance matrix C˜ x to be known. In case of un-
known covariance matrices, similar results can be computed
based on a set of random samples of x˜ by using the compos-
ite real and augmented complex sample covariance matrices
instead of the true covariance matrices.

In Fig. 1, we plot the share in overall variance that is cov-
ered by the first L real-valued principal components. For
comparison, we add the respective value obtained with lin-
ear and widely linear complex PCA. However, the latter two
methods only allow for integer numbers ` = L

2 of complex
principal components, i.e., they can only be considered for
even L. We have chosen N = 5, M = 3, and σ2 = 1

4 , and
we have assumed that b˜1 and b˜2 are uniformly distributed on
{±1,± j} while b3 is uniformly distributed on {±1}. The en-
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tries of h˜m have been sampled from an i.i.d. proper complex
Gaussian distribution with zero mean and unit variance.

The plot confirms the theoretical findings from the pre-
vious section. Firstly, the composite real (CR) PCA with an
even value of L is equivalent to the widely linear (WL) PCA
based on the augmented complex representation with ` = L

2 .
Secondly, both the composite real PCA and the widely linear
PCA outperform the linear (L) version.

In addition, the composite real PCA can achieve a bet-
ter dimensionality reduction than its complex counterparts.
In the example, the composite real PCA covers most of the
signal variance (more than 95%) with 5 real-valued princi-
pal components. To reach the same percentage by means of
a complex PCA, we have to use at least 3 complex principal
components, which corresponds to 6 real-valued ones.

The improved dimensionality reduction of the composite
real PCA is possible in the scenario under consideration due
to the fact that the composite real representation of the useful
signal lies in a subspace with an odd number of dimensions.
Since this does not correspond to an integer number of com-
plex dimensions, the resolution of the complex representation
is too coarse to account for this fact, and the number of re-
quired complex dimensions is the next higher integer.

7. COMPUTATIONAL COMPLEXITY

In addition to the finer granularity of the composite real PCA,
there is also an advantage in terms of computational complex-
ity. The most complex operation of PCA clearly is the eigen-
value decomposition (EVD) with complexity order O(Nw)
for an N ×N matrix, where w > 2. This operation has to be
performed for a complex 2N × 2N matrix in the augmented
complex widely linear PCA. In the composite real PCA, we
have to compute the EVD of a real-valued 2N ×2N symmet-
ric matrix, which has real-valued eigenvalues and eigenvec-
tors. Therefore, complexity can be reduced by conducting all
computations within the field of real numbers.

Since 2w > 4, the EVD of a real 2N × 2N matrix with
complexity order O((2N)w) requires more numerical opera-
tions than the EVD of a complex N ×N matrix if each com-
plex multiplication is implemented as four real-valued ones.
Thus, the complex linear PCA has lower computational com-
plexity than the composite real PCA and is therefore prefer-
able if the signal under consideration is known to be proper.

8. CONCLUSION

The proposed composite real principal component analysis
(PCA) can be considered as a generalization of the widely lin-
ear PCA from [2,6] since it allows for a finer granularity of the
dimension of the signal subspace. This makes the composite
real PCA superior in dimensionality reduction tasks. When
restricted to even numbers of real-valued principal compo-
nents, the composite real PCA has the same performance as

the widely linear PCA from [2, 6], but it has a lower compu-
tational complexity and a more intuitive derivation.
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