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ABSTRACT
Complex systems have received growing interest recently, due
to their universal presence in all areas of science and engineer-
ing. Complex networks represent a simplified description of
the interactions present in such systems. Boolean networks
were introduced as models of gene regulatory networks. Sim-
ple enough to be computationally tractable, they capture the
rich dynamical behaviour of complex networks. Structure-
dynamics relationships in Boolean networks have been inves-
tigated by inferring a particular structure of a network from
the time sequence of its dynamical states. However, general
properties of network structures, which can be obtained from
their dynamics, are lacking. We create a mapping of dynami-
cal states to structural classes, using time-delayed normalized
mutual information, in an ensemble approach. The high ac-
curacy of our classification algorithm proves that structural
information is embedded in network dynamics and that we
can extract it with information-theoretic methods.

Index Terms— Boolean networks, structural classes, in-
formation theory, classification, feature extraction

1. INTRODUCTION

The study of complex systems is an extremely active area of
research, as they are part of nature and of all fields of human
activity, such as physics, biology, ecology, social sciences,
economy, engineering [1]. Computationally tractable algo-
rithms to analyse, modify and synthesize complex systems
are lacking. The overall behaviour of such systems can be
better understood if we analyse the interactions between the
elements of the system, and not take into consideration the
particular details of each element. This level of simplification
gives rise to complex networks [2], [3].

One fundamental aspect in the study of complex networks
is the relationship between the structure and the dynamics of
the network [4]. The general questions that are being ad-
dressed are how to define classes of structure and classes of
dynamics and how different classes of structures and classes
of dynamics affect one another. Significant research effort has

been devoted to inferring the structure of particular complex
networks from the time sequence of their dynamical states.
The author of [5] defined classes of structures of complex net-
works and classified several real-world networks. Structure-
dynamics relationships were studied in [6] for a specific ex-
ample of complex networks.

The principles underlying the mutual influence of struc-
ture and dynamics of models of complex networks have also
been studied with information-theoretic methods. The au-
thors of [7] inferred the structure of several complex networks
from time series measurements of their dynamical behaviour
and assessed the reconstruction accuracy. In [8], the authors
inferred a Boolean network model of the gene regulatory net-
works of five biological systems and explored their dynamical
behaviour. Using Kolmogorov complexity, the macrophage
biological system was proven to have critical dynamics [9].
However, the universal principles that govern these structure-
dynamics relationships have generally not been investigated
in detail. The following studies have initiated the discovery
of these general laws of interaction between the structure and
the dynamics. Within the Kolmogorov complexity framework
and using an ensemble approach, the authors of [10] illus-
trated that critical random Boolean networks had the greatest
variety of dynamical behaviour. Here and in [11], dynami-
cal properties were investigated for certain classes of random
Boolean networks.

Our novel contribution is the characterization of structural
properties of Boolean networks, from the dynamics, with-
out inferring the topology. We identify information about
the class of structure of the network. We are able to accu-
rately separate classes of structures from the observed dy-
namics, without computing dynamical properties, in an en-
semble approach. With our time-delayed normalized mutual
information method, we prove that structural information is
embedded in the dynamics and that it can be revealed with
such methods from information theory. Taking the dynamical
states from two structural classes of Boolean networks, we
can separate the two systems with high accuracy, without ex-
plicitely knowing the structure of the system or its dynamical
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properties. Thus, our study of ensembles of Boolean networks
shows that we can create a mapping from general dynamical
states to structural classes.

The article is organized as follows: in section 2 we present
background information about Boolean networks, the normal-
ized mutual information and the clustering coefficient. In the
next section, we describe in detail the classification method.
In section 4, we illustrate the accuracy results of the classifi-
cation process and, in the last section, we present the conclu-
sions of this study.

2. BACKGROUND

2.1. Boolean networks

Boolean networks were introduced in [12], as models of gene
regulatory networks. They are graphs of interconnected ele-
ments, with the following properties: the state of each node
can be either 0 or 1 and each node has an n-dimensional
Boolean function associated to it. For each node, the dimen-
sion of the Boolean function is given by the number of inputs
to that node. An n-dimensional Boolean function is defined
as f : {0, 1}n → {0, 1} and, for each combination of in-
put values, the function is either 0 or 1. The total number
of Boolean functions with n inputs is 22

n

. For a network,
each node can have any number of input nodes, the in-degree,
and any number of output nodes, the out-degree, as long as
the mean in-degree of the network is equal to its mean out-
degree. The network topologies investigated in this paper, i.e.
the structural classes, are described in section 3.1.

In terms of dynamical behaviour, the network starts in an
initial state, where the state of each node is either 0 or 1.
Each node updates its state at time point t + 1 according to
the Boolean function associated with it. Each node has one
Boolean function associated with it. The state of the node
at time point t + 1 comes from its Boolean function, when
the input to the function is the collection of the states of the
input nodes to that node, at time point t. When the structural
classes are different, the Boolean functions are selected at ran-
dom from the uniform distribution on all Boolean functions.
When the structural class is the same for both categories of
networks that we want to classify, the Boolean functions come
from two different sets. They are selected at random from the
uniform distribution on all the functions from that set. For ex-
ample, one category of networks has only canalizing Boolean
functions, which are taken at random from the uniform dis-
tribution on all canalizing Boolean functions. More details
about this selection can be found in section 4.

2.2. Time-delayed normalized mutual information

The mutual information, MI, is defined as [13]

MI(X,Y ) =
∑
x

∑
y

p(x, y) · log2
p(x, y)

p(x) · p(y)
. (1)

In our study, the MI has a wide range of variation when
applied to the dynamical behaviour from different types
of Boolean networks. Thus, it is impossible to conduct a
comparative analysis of the dynamical behaviour of such
networks, to obtain meaningful results. To solve this issue,
we performed the analyses with the normalized version of
the mutual information, which has values between 0 and 1.
We used the following definition of the normalized mutual
information, nMI, between two random variables X,Y [14]:

nMI(X,Y ) =
MI(X,Y )

H(X,Y )
=

H(X) +H(Y )

H(X,Y )
− 1. (2)

If X = Y , then nMI(X,Y ) = 1, and if X,Y are indepen-
dent, then nMI(X,Y ) = 0.

2.3. Clustering coefficient

The clustering coefficient for undirected and unweighted net-
works was introduced in [15] and extended for directed and
weighted networks in [16]. In this study, we use the directed
version of the clustering coefficient, which will be referred to
as clustering coefficient throughout the paper. Let CM be the
connectivity matrix of a directed graph of N nodes. Let NOi

be the number of neighbours of node Oi, ∀i = 1 : N . The
number of all possible connections between these neighbours
is equal to NOi

· (NOi
− 1). The local clustering coefficient

for a node Oi, CCi, can be defined as the ratio between the
actual connections between the neighbours of this node and
all the possible connections between them, as

CCi =

NOi∑
j=1

NOi∑
k=j+1

[CM(Oj , Ok) + CM(Ok, Oj)]

NOi
· (NOi

− 1)
. (3)

The average clustering coefficient of a network, CC, is
defined as the mean of the local clustering coefficients of all

the nodes of the network: CC =
1

N
·

N∑
j=1

CCi.

3. DESCRIPTION OF THE METHOD

3.1. Boolean network design

We simulated and classified the dynamics for the following
structural classes of Boolean networks: fixed K = 3 Boolean
network, where each node has a fixed in-degree K = 3 and
a fixed out-degree K = 3, fixed K = 2 Boolean network,
where each node has a fixed in-degree K = 2 and a fixed
out-degree K = 2, Poisson Boolean network, where the in-
degrees of the nodes are drawn from a Poisson distribution
with mean K = 3 and the out-degrees from a Poisson dis-
tribution with mean K = 3, scale-free Boolean network,
where the in-degrees of the nodes are drawn from a scale-
free distribution with mean K = 3 and the out-degrees from
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a scale-free distribution with mean K = 3 and modular
Boolean network, which comprises three modules that are
pairwise connected by one random connection (the first mod-
ule is a fixed K = 3 Boolean network, the second module
is a fixed K = 4 Boolean network and the third module is a
fixed K = 5 Boolean network). In all structural classes, the
nodes are pairwise connected at random.

3.2. Estimation of the nMI matrix

As the nodes of the network are interconnected, they in-
fluence each other from one time step to another. A time-
delayed version of the nMI captures more accurately the
correlation between the dynamical states of the nodes of the
network. We define the normalized mutual information ma-
trix as nMI(i, j) = nMI(Oi(t), Oj(t + 1)), where Oi(t)
represents the state of node Oi, at time point t, and Oj(t+1)
represents the state of node Oj , at time point t + 1. We use
a plug-in method to estimate the nMI matrix. We first esti-
mate the joint probability mass function, pmf, of Oi(t) and
Oj(t+ 1), ∀i, j = 1 : N .

After the structure has been created and the Boolean func-
tions have been assigned to each node, we run the network
forward in time starting from an initial state. It comprises the
inital states of all the nodes, randomly selected from the uni-
form distribution on 0 and 1. We run the network forward
in time for Ns = 100 time steps and record the dynamical
state of the entire network, for each time point. We repeat
this process Nn = 100 times, as follows: we have the same
connectivity matrix and the same Boolean functions, but, we
restart the network from a random initial state each time. As
a result, we have Nn · (Ns + 1) = 10100 time points for
the estimation of the time-delayed normalized mutual infor-
mation, including the initial state. We collect the states of
node Oi from t = 1 : Ns − 1 and the states of node Oj from
t = 2 : Ns. We estimate the joint pmf of node Oi and Oj

by using a frequency of appearance estimator. We count the
frequency of each of the states: (0, 0), (0, 1), (1, 0) and (1, 1)
and then we divide by the total number of states.

3.3. Thresholding the nMI matrix

The nMI matrix contains real values in the [0 1] interval.
They represent the degree of correlation of the dynamics of
the nodes between which they were computed. A high nMI
value between two nodes is a good indicator of the presence of
a link between them. However, even if two nodes are linked,
their nMI may be lower than the nMI for other pair of con-
nected nodes. In addition, a relatively high nMI value may
come from indirect connections between two nodes. As a re-
sult, it is impossible to define a universal value of nMI, above
which all nMI values indicate a link between two nodes.

To overcome this problem, we develop a thresholding
scheme to obtain several approximations of the connectivity

pattern of the nodes. For a given threshold level, the nMI val-
ues that are greater than this level are replaced with 1 and the
rest are replaced with 0. For each nMI matrix, the threshold
levels are the 2.5th, 25th, 50th, 75th and 97.5th percentiles
of the set of all the nMI values from the matrix. For example,
the 25th percentile of a set of numbers is the value for which
25% of all the elements in this group are smaller or equal to
this value. For each level, we create a thresholded nMI matrix
of 0 and 1.

3.4. SVM classification

We compute the clustering coefficient of the thresholded nMI
matrix, which represents one feature for classification. We
associate 5 classification features for each nMI matrix, corre-
sponding to the 5 thresholding levels. Two structural classes
of Boolean networks are separated with a support vector ma-
chine (SVM) algorithm [17], with a Gaussian kernel and a
10-fold cross-validation scheme. The Gaussian kernel param-
eters are optimized using grid search, having the missclassifi-
cation rate as an optimization criterion.

4. SIMULATION RESULTS

The accuracy results presented in table 1 and in table 2 are av-
eraged over 100 experiments. For each experiment, we repeat
the procedure of creating the structure, assigning the func-
tions and running the network, Ne = 1000 times. One ac-
curacy result is computed as follows: we have Ne = 1000
samples for classification, each sample containing 5 features.
We train the SVM classifier on 100 samples and we test the
algorithm on 200 samples. The training samples are selected
at random from the uniform distribution on all samples and
the test samples are selected at random from the uniform dis-
tribution on the remaining samples after training. The number
of nodes of the network is N = 100.

In table 1, the Boolean networks have a variety of classes
of structures. The Boolean functions are randomly chosen
from the uniform distribution on all Boolean functions with
a given number of inputs. In table 2, we perform the exper-
iments for one structural class, a fixed K = 3 Boolean net-
work. The types of Boolean functions are different for each
class. In the first test case, one group of networks contains
functions randomly chosen from the uniform distribution on
canalizing Boolean functions [18] and the other group con-
tains functions randomly chosen from the uniform distribu-
tion on noncanalizing Boolean functions. In the second test
case, one class contains functions randomly chosen from the
uniform distribution on canalizing Boolean functions and the
other class contains functions selected at random from the
uniform distribution on all Boolean functions.
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Table 1. Classification of Boolean networks from their dy-
namics. The Boolean functions are selected at random from
the uniform distribution on all Boolean functions.

Class In-degree Out-degree Accuracy
distribution distribution

1 fixed K = 3 fixed K = 3 94%
2 Poisson Poisson

K = 3 K = 3

1 fixed K = 3 fixed K = 3
2 modular K1 = 3 modular K1 = 3 99.73%

K2 = 4, K3 = 5 K2 = 4, K3 = 5

1 fixed K = 3 fixed K = 3 50.17%
2 fixed K = 3 fixed K = 3

1 Poisson Poisson
K = 3 K = 3 50.05%

2 Poisson Poisson
K = 3 K = 3

1 Poisson Poisson
K = 3 K = 3 94.57%

2 Scale-free Scale-free
K = 3 K = 3

1 fixed K = 2 fixed K = 2 98.39%
2 fixed K = 3 fixed K = 3

Fig. 1. The classification accuracy of two Boolean networks
with fixed degree K=2 and fixed degree K=3, shown as a func-
tion of the nodes of the network. The results are averaged over
100 experiments.

5. CONCLUSIONS

Our algorithm produces extremely high classification accu-
racy results, which are averaged over 100 experiments. The
range is 92% to 99.8%, for networks with N = 100 nodes.
Figure 1 shows that the classification accuracy falls between
92.8% and 99.5%, for networks with the total number of
nodes ranging from 50 to 200 nodes. The accuracy rises
sharply for networks with 60 to 90 total number of nodes,
continues with a more moderate increase in the range of
90 − 150 nodes, leveling off at around 99%, for networks
with the total number of nodes above 150.

Table 2. Classification of Boolean networks from their dy-
namics. The structure is the same for both classes, a random
Boolean network with fixed K = 3, but the types of Boolean
functions are different for each class.

Class Boolean update Accuracy
functions

1 canalizing 99.27%
2 noncanalizing
1 canalizing 92.85%
2 all functions

We tested our classification algorithm on data from one
class of Boolean networks to identify whether or not our al-
gorithm yielded false results. We obtained a classification ac-
curacy of around 50%, indicating that it is not possible to sep-
arate the two data sets. These results are correct, as the data
sets belong to the same ensemble of Boolean networks and
are characterized by the same features. In addition, this re-
sult proves that our method performs well on ensembles of
Boolean networks, as it cannot classify individual networks
coming from the same ensemble.

Information about the structure of real biological net-
works is available indirectly from their dynamics. For exam-
ple, gene regulatory networks are identified indirectly through
gene expression microarray experiments [19], [20]. Classi-
fying ensembles of such networks into structural classes,
using their dynamical states, will uncover the general laws
that govern the bidirectional relationship between their struc-
ture and their dynamics. Such theoretical framework will
facilitate the understanding of how complex networks, and
biological networks in particular, are organized, how their
constituent parts are interconnected and how they function
together as a whole, giving rise to intricate dynamical be-
haviour. In addition, this methodology can be the first step
in the inference process of biological networks. Once the
structural class is identified, more targeted methods can be
used to infer the structure of the biological network under
study. The results of our experiments with Boolean networks,
as models of complex networks, support these hypotheses.
Our classification method, based on time-delayed normalized
mutual information, discovers structural information from
trajectories of dynamical states of Boolean networks. The
results indicate that we have successfully created a mapping
of dynamical states to structural classes of Boolean networks.
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