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ABSTRACT

Vision-based methods are very popular for simultaneous
localization and environment mapping (SLAM). One can
imagine that exploiting the natural acoustic landscape of the
robot’s environment can prove to be a useful alternative to
vision SLAM. Visual SLAM depends on matching local fea-
tures between images, whereas distributed acoustic SLAM
is based on matching acoustic events. Proposed DASLAM
is based on distributed microphone arrays, where each mi-
crophone is connected to a separate, moving, controllable
recording device, which requires compensation for their dif-
ferent clock shifts. We show that this controlled mobility is
necessary to deal with underdetermined cases. Estimation is
done using particle filtering.

Results show that both tasks can be accomplished with
good precision, even for the theoretically underdetermined
cases. For example, we were able to achieve mapping error as
low as 17.53 cm for sound sources with localization error of
18.61 cm and clock synchronization error of 42 ps for 2 robots
and 2 sources.

Index Terms— microphone arrays, distributed micro-
phone arrays, mobile robots, particle filter, robot navigation,
source localization

1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a funda-
mental problem in robotics, where it solves the problem of
navigation in an unknown environment, but is now present in
the context of mobile devices as well. Acoustic navigation
of robots has been done with non-distributed microphone
arrays: either mounted on the walls around the robot to track
its position [1] or on the robot itself to track positions of mul-
tiple sound sources and determining its own position using
triangulation [2]. There is, however, no work done in using
distributed microphone arrays for this purpose. On the other
hand, vision-based methods are very popular [3]. One can
imagine that exploiting the natural acoustic landscape of the
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robot’s environment can prove to be a useful alternative to vi-
sion SLAM. Hu ef al. used a robot-mounted non-distributed
microphone array to perform acoustic SLAM in [4]. Just as
a typical visual SLAM depends on matching local features
between images, e.g. SIFT or SUREF features [5], distributed
acoustic SLAM (DASLAM) would be based on matching
acoustic events. There exist many algorithms in the field
of audio event detection (AED) [6, 7]. However, in case of
acoustic SLAM the event detection and classification accu-
racy is irrelevant. Instead, it is only important that all devices
detect the same events and the AED algorithm needs to be
robust against differences between changes in reverberations
and signal power, which are different for every microphone
in our distributed scenario. To our knowledge there has not
been a study like that and in this work we assume that all mi-
crophones successfully detect the same events with random
time delays and that we detect events in every time step.

Using classical, non-distributed microphone arrays suf-
fers from two problems: it requires costly specialized multi-
channel (8, 16, 32 and more) A/D converters to ensure sam-
pling synchronization between channels [8]; it also requires
that the positions of microphones are known with high preci-
sion in order for the system to be able to calculate the TDOA.
The first problem can be dealt with by connecting the micro-
phones to much cheaper single-channel A/D converters, how-
ever the result is desynchronization of the recorded signals.
Lienhart er al. proposed to synchronize the recording devices
over a network [9]. Another solution has been proposed by
Ono et al., who developed a method to jointly estimate the
microphone locations, the single source location and the time
origins of the recording devices [8, 10]. This method solves
both problems at the same time, although it is designed for
off-line processing, which limits its applications. Miura et al.
proposed an on-line algorithm based on the extended Kalman
filter [11], which they applied to microphone array calibra-
tion, i.e., to estimating the positions of the microphones and
a single sound source, as well as the clock shifts. In this pa-
per we extend on this work and introduce microphone mobil-
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ity and increase the number of sound sources to an arbitrary
number. Furthermore, due to high non-linearity of the system,
we employ particle filters, which we have found to be much
more stable and accurate than the EKF used in [8,10,12]. We
apply this technique to DASLAM.

2. DASLAM

In DASLAM, we use a distributed mobile microphone array,

which is defined as in [12]:

1. There are N sound sources and M microphones, all at
arbitrary positions.

2. Positions of the sound sources are fixed, but unknown.

3. Microphones are distributed and attached separate record-
ing devices (robots) and their clocks and system times are
not synchronized, unknown and the synchronization error
is random.

4. Robots are mobile and holonomic, i.e., have three degrees
of freedom and can freely change their position and ori-
entation.

5. We assume that the speed of the robots is known, since we
know their control.

6. The sources emit acoustic events that can be detected and
identified by all microphones.

The following variables need to be estimated in the sys-
tem: positions of the sources (sound source mapping), posi-
tions of the robots (robot localization), system clock shifts of
individual robots.

For each sound source, its state can be represented by vec-
tor

T
&9 = [ 4], M

where a:l(-s) and ygs) are the coordinates of the ¢-th sound

source, and for each robot by

T
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where x;R) and yj(-R) are j-th robot’s position, ¢; its orienta-

tion and 7; its clock difference with the real time.

2.1. State transition

We assume that the state changes according to

€t +1) =), 3)
" - v;(t) sin(ip;)
&7 (t+1) =& (t) + |v(t)cos(p)) | +2(t), (4
0

where v; is the robot’s speed, ¢; the direction of movement
and z(t) is the process noise and represents the imprecision
of robot movement control. Since the noise comes from many
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sources (errors for no wheel position/speed feedback, odom-
etry measurement errors, wheel slippage, efc.), we assume it
is a zero-mean Gaussian noise:

z(t) ~ N(0,%2), (5)

where ¥, = diag (04y, gy, 05,0, 0).

2.2. Observed variables

The time of an audio event emitted by the ¢-th source recorded
by the j-th robot at time ¢; ; is equal to

D; (¢t
tij =1+ 71"]( )

+ Tj, (6)
where D; ; is the distance between them and c is the speed of
sound. This distance for time ¢ can be calculated as

D20 = («70) =) + (70~ o/

Since we do not know the actual emission time of each
audio event ¢;, we follow [11] and use difference of arrival
times between each microphone and a reference microphone
At; j = t; — t1. There are therefore N x (M — 1) observed
variables in the system:

2

(7
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wheret=1,...,N,and j = 2,..., M and

D ;(t) —

At ;= Dia ()

+71; —T1 )
where w(t) is the measurement noise, also assumed to be
Gaussian:

w(t) ~N(0,0.1), (10)

where I is the identity matrix.

2.3. Determinedness

As pointed out in [8], the system is not always determined,
i.e., there are fewer independent observed variables as is the
dimensionality of the state vector. The above system is deter-
mined only if we have at least 3 microphones and 3 sound
sources and the number of observed variables N(M — 1)
is at least as large as the number of the unknown variables
3M + 2N, so the following inequality needs to be satisfied:

NM > 3(N + M). (11)

However, this constraint does not hold in case there is corre-
lation between subsequent states. Fig. 1 shows the theoretical
error of estimating the state of one of the robots (z1,y1)
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Fig. 1. Theoretical MAP estimation errors for
P(z1,y1lr2 = x2,y2 = y2,(1) (dotted line), P(x1,y1/C1)
(dashed-dotted line), P(z1,y2|C1,- .., {r) (dashed line) and
P(l’l, y1|C1, . ,CT, ULy 7’LLT) (SOlld line).

in a 3-source, 2-robot scenario with known sound source
positions, i.e., when we observe 3 variables and need to
estimate 4. The position is found as the maximum a poste-
riori estimate. If we know the position of the other robot,
the mode of the posterior P(z1,y1|x2 = 22,y2 = y2,(1)
points to the correct solution even if we have only one mea-
surement, because the system is overdetermined. However,
if we do not know it and need to integrate it out, the pdf
P(x1,y1/¢1) becomes blurred and multimodal, with the
maximum at a wrong place. Multiple measurements, i.e.
P(z1,y2|(1,- .-, (1), result in the estimate jumping between
local minima and never reaching the true solution. However,
the known dependence between subsequent robot positions,
i.e., knowledge of the model A and the control of the system
u; (control signal of the robot, which we have access to),
ie. P(x1,1lC1,. .., (T, u1,. .., ur), removes the bias of the
estimate.

3. INFERENCE

Due to the non-linear nature of the observation, the inference

in our system can be performed using the particle filter. The

original particle filter algorithm, called sequential importance

resampling (SIR) [13], is used. It consists of the following

steps:

1. Uniformly draw P particles £, (0) and assign each of them
equal weights: wy(t) = 1/P, k€ {1,..., P}.

2. Estimate the next state & (t) of each particle based on the
state model from (3) and 4.
Add random noise to each particle.

4. Update the weight wy(t) of each of the particles based on
the Gaussian measurement distribution from (8): wy(t) =

1593

wi(t = p(C(8)IEw(D))-

5. If the effective number of particles is less than the de-
sired threshold, Pug (£) = (2521 wg(t))
form resampling. This is done by randomly selecting new
particles with probabilities wy(¢) and using them to re-

place the old particles, and then setting the new weights
towg(t)=1/P, ke {1,...,P}.

6. Go to point 2.

1
< Py, per-

The point estimate of the system’s state can be found as
the weighted (using particle weights) mean of the particles.

4. EXPERIMENTAL RESULTS

4.1. Set-up

The proposed approach was tested through simulations. The
simulation included a group of robots that moved with a
known, constant velocity and stationary sound sources. The
robots were moving independently and each robot could
change its orientation at random time intervals by a random
degree. The orientation, as the robots were holonomic, was
known, but affected by process noise. The movements of
all robots and positions of sound sources were constrained
to a room 80 m by 80 m with point (0,0) in its center.
When robots reached the wall, they were re-oriented towards
the center of the room. The initial positions of both the
robots and sound sources were unknown and randomly se-
lected from zero-mean normal distribution. Each robot was
equipped with a single microphone. The speed of sound was
assumed to be 343 m/s. The tests were run multiple times
for (2, 4,8, 12) sound sources and (2, 5, 8,10, 12, 14) robots.
Process noise for the robot state transition was A (0, af,y) for
position and AV(0, 02) for orientation, where o, was 10 cm
and o, was 1deg. The clock synchronization error is due to,
apart from errors in synchronizing system clocks of different
robots, varying hardware and ADC sampling rates, and was
assumed to be constant, but different among the robots and
unknown. The measurement noise o, was set to 1.7 cm.
The effective number of particles threshold Ny, was initially
large in each experiment to improve the convergence speed
and then decreased to assure that resampling was done less
frequently. All tests were run with 2500 particles and stopped
after 10000 iterations.

The measurements of sounds emitted from the sound
sources do not carry bearing information as the robots are
equipped with a single microphone. What is measured is
the distance difference between the reference robot and other
robots to each of the sound sources. This means that we
estimate the positions in a coordinate system anchored in
the reference robot. The relation between the nodes of the
system in the estimated coordinate system, i.e. the distances
and orientations between robots and sound sources, are esti-
mated correctly, but the entire estimated coordinate system is
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Fig. 2. RMSE of position estimation of 5 robots (green) and 8
sound sources (red) its asymptote is plotted at 22 cm.

translated. In order to remove this translation bias from the
results, we apply an affine transformation to the estimated
values. The parameters of the affine transform are found by
means of least squares estimate. The estimates obtained with
a reverse transform are used to calculate the errors.

4.2. Results

The system was found to be convergent, even for the under-
determined cases (cf. Fig. 3), although in some cases the es-
timates would fall into local minima, and then high Ny, and
levels of particle noise would slow down the descent from
a locally to the globally optimal solution. The results are
presented in Table 1 and visualized in Fig. 3. These were
computed as root mean squared errors of position estima-
tion of robots and sound sources and as an arithmetic mean
for clock synchronization estimation errors, with outliers re-
moved from averaging due to slow convergence. Figure 2
shows an example of algorithm’s convergence. Reduced par-
ticle noise provides more stability and lower estimation error
once the global solution is reached.

The results indicate that with more nodes present in the
system, the estimation errors are greater. The reason for this
is the fact that with more robots and sound sources there are
more possible solutions and the time of convergence is higher.
On the other hand, when the complexity of the system was
lower, the global solution was found very quickly and perfor-
mance of the estimation was below 20 cm for both robots and
sound sources. This suggests that the number of particles and
the number of iterations should be adjusted according to the
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Fig. 3. Results from Table 1, whereas darker colors repre-
sent higher error. The solid curve marks the determined-
ness threshold of the system with its asymptotes marked with
dashed lines, i.e. situations below this curve from Eq. 11 have
less independent observed variables than the dimensionality
of the state vector.

number of estimated state variables.

5. CONCLUSION AND FUTURE WORK

In this article we have proposed a new idea of distributed
acoustic SLAM (DASLAM), which is analogous to the very
common visual SLAM. We use distributed mobile micro-
phone arrays, and test our idea on the tasks of robot naviga-
tion and localization of multiple sound sources. Results show
that both tasks can be accomplished with good precision,
even for the theoretically underdetermined cases.

In future work we plan to test existing acoustic event de-
tection methods for robustness against reverb and sound level
differences between microphones, and combine them with
our DASLAM approach, using real audio for navigation and
mapping. We also plan to explore the possibilities of applying
this technique to mobile devices, combined with their built-in
accelerometer and gyroscope data.
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