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ABSTRACT
The presence of nonlinearities as well as reverberation ef-
fects severely degrades the audio quality in sound reproduc-
tion systems. In this context, many adaptive strategies have
been developed to compensate for room effects. However,
when nonlinear distortion becomes significant, room equal-
ization requires the introduction of suitable solutions to tackle
this problem. Linearization of loudspeakers has been deeply
investigated but its combination with room equalization sys-
tems may not be so straightforward, mainly when the nonlin-
earities present memory. In this paper, the nonlinear system
has been modeled as a Volterra filter that represents the loud-
speaker tandemly connected to a linear filter that corresponds
to the electroacoustic path including the enclosure and the mi-
crophone setup. Based on this structure, we introduce a non-
linear filtered-x second-order adaptive Volterra filter that uses
the virtual path concept to preprocess the audio signals. Sim-
ulation results validate the performance of the new approach.

Index Terms— Adaptive equalization, Volterra filters,
nonlinear distortions, Virtual channel

1. INTRODUCTION

The basic components of sound reproduction systems, such
as digital-to-analog (D/A) and analog-to-digital (A/D) con-
verters, amplifiers, loudspeakers and microphones, usually
present linear responses, but when they are driven with large
amplitude inputs, nonlinear distortions that severely degrade
the audio quality can arise. In the context of audio equaliza-
tion, the main goal is to make the global impulse response of
the sound reproduction channel as close as possible to a de-
sired one (see the basic structure of an equalization system in
Fig. 1). If the system has a linear behavior, an adaptive linear
filter can properly compensate for the distortion (e.g. [1, 2]).
However, if the system exhibits non-linearities, a linear fil-
ter performs poorly and the nonlinear distortion must be ac-
counted for in the design of the equalization system.
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Fig. 1. Acoustic equalization transmission chain.
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Fig. 2. Nonlinear-parallel model of an acoustic equalization
system with two nonlinear filters tandemly connected.

The nonlinear distortion can potentially occur in each of
the system components (see Fig. 1). The electroacoustic path
that involves the loudspeaker-enclosure-microphone (LEM)
setup can be modeled as two nonlinear filters tandemly con-
nected, as it is shown in Fig. 2. Typically, the main sources
of nonlinearities occur in the first filter, that represents the
D/A converter, the loudspeaker and its amplifier, and are due
to the high input signal levels and the loudspeaker physical
properties [3, 4]. While the amplifier can be modeled as a
memoryless system, the loudspeaker behavior is more prop-
erly described as nonlinear distortion with memory [5]. In
contrast, the propagation path between loudspeaker and mi-
crophone is considered as a linear filter and it is reasonable to
expect a linear behavior for the microphone, too. Thus, the
second block can be modeled as a linear filter.

Adaptive linearization of loudspeakers has been widely
studied using a p-order pre-processor [6], which allows to
eliminate the nonlinearities of a system up to the p-order when
a p-order filter [7, 8] is implemented. As the pre-processor
filter is based on both the perfect identification of the linear
and nonlinear filters and the inversion of the linear block, this
method is very sensitive to channel estimation misadjustment.

Although there are many papers addressing the loud-
speaker linearization, only very few papers consider also
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Fig. 3. Adaptive equalization diagram with a filtered-x adap-
tive nonlinear algorithm (Fx-ANA).

the room compensation problem. Similarly to linear room
equalization, adaptive nonlinear room compensation requires
filtered-x ad hoc treatment to avoid instability in the filter
coefficient update, where the input signal x(n) is filtered
through the electroacoustic path. Thus, the filtering of x(n)
involves the use of a nonlinear filtered-x algorithm as it was
introduced in [9]. This structure has been previously used
in active noise control (using the so-called virtual secondary
path) with adaptive Volterra filters [10,11] and functional-link
artificial neural networks (FLANN) [12, 13]. The drawback
of the Volterra series is the increasing number of param-
eters with order. For that reason, only second-order and
third-order Volterra filters are usually implemented [8]. Re-
garding FLANN filter strategy, it does not use products of
input samples with different time shifts, thus, its performance
can be deteriorated in some situations. To alleviate this prob-
lem, different modifications, such as the generalized FLANN
(GFLANN) [14] and the Fourier nonlinear (FN) filter [15],
have been proposed. However, the nonlinear expansion of
the input signal of order P produces M = 2P + 1 func-
tions to be filtered through the nonlinear filtered-x algorithm.
In [10], a general function expansion is used for both FLANN
and Volterra filters, where the nonlinear secondary paths are
modeled as nonlinear memoryless systems. To the best of
our knowledge, none of the previous works have address the
problem of nonlinear distortion with memory in room equal-
ization systems. Motivated by the virtual path model abilities
and the good performance of Volterra filters on a nonlinear
filtered-x framework, in this work we present a second-order
Volterra filter capable of compensating nonlinear distortion
with both memory and cross-terms of the input signal x(n),
requiring only a single nonlinear filtering of x(n). Fig. 3
illustrates the nonlinear room equalization problem of Fig. 1,
where both L1 and L2 represent a linear filter, and the non-
linear function with memory is denoted by the symbol N1.

The paper is organized as follows. A nonlinear adap-
tive algorithm based on the filtered-x least-mean-square (Fx-
LMS) strategy is introduced in Section 2. This approach will
be called through the paper as NFx-LMS. Specifically, the vir-
tual nonlinear channel is provided in Section 3. Experimental
results are given in Section 4 to confirm the robustness and ef-
fectiveness of the developed algorithm. Section 5 summarizes
the main conclusions of the paper.

2. ADAPTIVE EQUALIZATION OF NONLINEAR
ACOUSTIC SYSTEMS

Assuming that the nonlinear system can be modeled by a Qth-
order Volterra series with finite memory, the output signal
z(n) (see Fig. 3) can be expressed as

z(n) = L2 {H[y(n)]}

= L2

{M1−1∑
i1=0

L1(i1)y(n− i1) +

Q∑
q=2

[Mq−1∑
i1=0

. . .

Mq−1∑
iq=0

N1,q(i1, . . . , iq)y(n− i1) · . . . · y(n− iq)

]}
,

(1)

being H the nonlinear system modeled with the first paral-
lel block filter and Mq is the memory or number of coeffi-
cients in the qth-Volterra kernel. Moreover, L1(i1) is the i1-
coefficient of the first kernel and N1,q(i1, . . . , iq) refers to the
(i1, . . . , iq)-coefficient of the qth-kernel, where a symmetric
form has been considered for the Volterra kernels [16].

To implement the adaptive compensation prefilter, a
second-order Volterra filter W has been used in Fig. 3 to
remove nonlinearities up to p = 2 order. The relationship
between input and output of the adaptive filter is given by

y(n) = W[x(n)] =

N1−1∑
i1=0

w1(i1;n)x(n− i1)

+

N2−1∑
i1=0

N2−1∑
i2=0

w2(i1, i2;n)x(n− i1)x(n− i2), (2)

where Np is the number of coefficients of the pth-Volterra ker-
nel (p = 1, 2) and wp(i1, . . . , ip;n) is the specific coefficient
at time n.

The error signal e(n) is computed as the difference be-
tween the signal z(n) measured at the microphone (1) and
the desired signal d(n), which corresponds to the input signal
with a proper time delay (τ )

e(n) = d(n)− z(n) = x(n− τ)− z(n). (3)

The filter coefficients are updated by applying an stochas-
tic gradient algorithm that uses the instantaneous estimate of
the gradient of E{e2(n)} with respect to the filter coefficients
as in the classical LMS [9, 17] that leads to

w1(i1;n) = w1(i1;n− 1)− µ1

2

∂e2(n)

∂w1(i1;n)

= w1(i1;n− 1) + µ1e(n)
∂e(n)

∂w1(i1;n)
, (4)

w2(i1,i2;n) = w2(i1, i2;n− 1)− µ2

2

∂e2(n)

∂w2(i1, i2;n)

= w2(i1, i2;n− 1) + µ2e(n)
∂e(n)

∂w2(i1, i2;n)
, (5)
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where µ1 and µ2 are the step size parameters.
If the system takes the structure shown in Fig. 3, we can

derive
∂e(n)

∂w1(i1;n)
=

M−1∑
m=0

∂z(n)

∂y(n−m)
· ∂y(n−m)

∂w1(i1;n)
, (6)

∂e(n)

∂w2(i1, i2;n)
=

M−1∑
m=0

∂z(n)

∂y(n−m)
· ∂y(n−m)

∂w2(i1, i2;n)
, (7)

where M is the memory size of the LEM system, which is
given by M = max(M1,M2) + ML2 − 1, being ML2 the
length of the second linear block L2.

Moreover, when the step sizes are small enough to allow
slow variations of the filter coefficients, from (2) it can be
written

∂y(n−m)

∂w1(i1;n)
≈ x(n−m− i1), (8)

∂y(n−m)

∂w2(i1, i2;n)
≈ x(n−m− i1)x(n−m− i2). (9)

For simplicity, we are using the concept of virtual path
as in [9, 10] to refer to the derivative of the nonlinear system
defined in (1) with respect to the delayed inputs

N̂(m;n) =
∂z(n)

∂y(n−m)
, m = 0, . . . ,M − 1. (10)

Finally, combining (6 - 10) into (4) and (5), we obtain the
update equations of the NFx-LMS algorithm

w1(i1;n) = w1(i1;n− 1)

+µ1e(n)
M−1∑
m=0

N̂(m;n)x(n−m− i1), (11)

w2(i1, i2;n) = w2(i1, i2;n− 1)

+µ2e(n)
M−1∑
m=0

N̂(m;n)x(n−m− i1)x(n−m− i2).

(12)
Notice the similarity between (11) and the conventional

filtered-x LMS (Fx-LMS) algorithm used for linear applica-
tions [18]. Since the implementation of (11) and (12) is not
straightforward, next section will provide the specific imple-
mentation of the virtual channel for this listening-room com-
pensation approach.

3. VIRTUAL CHANNEL DESCRIPTION

The virtual channel defined in (10) is a time-varying filter of
M -length whose coefficients depend on the input signal y(n).
From the block diagram in Fig. 3, (10) can be expressed as

N̂(m;n) =
∂z(n)

∂y(n−m)
=

ML2−1∑
l=0

∂z(n)

∂y′(n− l)
· ∂y

′
(n− l)

∂y(n−m)

= LT
2

[
∂y

′
(n)

∂y(n−m)

∂y
′
(n− 1)

∂y(n−m)

∂y
′
(n−ML2

+ 1)

∂y(n−m)

]T
,

(13)
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Fig. 4. Linear (a) and quadratic (b) kernels of the system H.

where the derivative of the output of the nonlinear system H is
filtered through the enclosure/microphone linear block, mod-
eled as a FIR filter defined by vector L2.

In order to obtain the derivative coefficients as in [9], we
should also take into account the linear filter L2 to relate the
input samples y(n −m) to the loudspeaker output signal for
different time delays y

′
(n − l). Thus, the coefficients can be

expressed as

∂y
′
(n− l)

∂y(n−m)
= L1(m− l) + 2

M2−1∑
i=0

N1,2(m− l, i)y(n− i− l),

(14)

when 0 ≤ (m − l) < max(M1,M2). In other cases, the
coefficients are 0. Finally, substituting (14) into (13), and (13)
into (11) and (12), we will obtain the adaptive algorithm for
the prefilter coefficients of the system W .

Note, that if H is linear (N1 = 0), only the linear coeffi-
cients in (14) are considered and the overall virtual channel is
the linear convolution of the linear components (L1 and L2),
which leads in (11) to the conventional Fx-LMS algorithm.

4. EXPERIMENTAL RESULTS

In this section, the robustness and effectiveness of the NFx-
LMS algorithm is evaluated in nonlinear equalization scenar-
ios. A normalized adaptation of NLMS type has been used in
the NFx-LMS, that leads to the NFx-NLMS algorithm.
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Fig. 5. Impulse response of the acoustic path including the
microphone response.
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Fig. 6. EMSE evolution of the NFx-NLMS algorithm (solid
line), the simplified NFx-NLMS algorithm (dashed line and
square markers) and linear Fx-NLMS algorithm (dotted line).

To model the nonlinear LEM scheme, the system H, that
includes a loudspeaker, has been measured in low-reverberant
conditions at a sampling frequency of 8 kHz using a second-
order Volterra filter with M1 = M2 = M

′
= 64 coefficients.

The linear and quadratic kernels are shown in Fig. 4. As the
second-order kernel presents a symmetric behavior [16], a tri-
angular representation has been used in Fig. 4 (b). The im-
pulse response of the acoustic path and the microphone (L2

system) has been also measured with 8 kHz and 512 samples,
within a room with a reverberation time of T60 = 170 ms, see
Fig. 5.

Different Linear-to-NonLinear Ratio (LNLR) setups will
be considered. The LNLR level is defined as the ratio between
the powers of the linear and nonlinear components (y

′

l(n) and
y

′

n(n), respectively). To modify the LNLR value, an α pa-
rameter is used as

y
′
(n) = y

′

l(n) + αy
′

n(n) = yT (n)L1 + αyT (n)N1,2y(n),
(15)

where L1 and N1,2 represent the linear and quadratic kernels
of size M

′ × 1 and M
′ ×M

′
, respectively. Moreover, y(n)
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Fig. 7. EMSE evolution of the NFx-NLMS algorithm and the
simplified and linear versions, with LNLR= 0 dB (α = 7).

is a column vector that contains the last M
′

samples of y(n).
The algorithm performance is evaluated in terms of con-

vergence speed and steady-state error by inspecting the ex-
cess mean-square-error, EMSE = E

{
[e(n)− r(n)]2

}
that

has been estimated by averaging over 100 independent runs of
the algorithm. The input signal x(n) is a white Gaussian noise
with zero mean and unit variance. Moreover, an uncorrelated
noise signal r(n), with zero mean and signal-to-noise ratio
(SNR) of 40 dB, has been added to the microphone signal.
The adaptive filters have been designed to have N1 = 1024
and N2 = 64 coefficients for the first and second kernel, re-
spectively. The delay of the desired signal has been chosen
closed to N1/2, specifically τ = 549.

Fig. 6 illustrates the EMSE evolution of the NFx-NLMS
algorithm (solid line) with α = 1 (LNLR= 20 dB). The
performance of the algorithm is compared to the linear Fx-
NLMS algorithm (dotted line), which implies that the nonlin-
ear component (N1) is not considered and the virtual chan-
nel is only obtained from linear component filters (L1 and
L2). Also a simplified approach derived from the NFx-NLMS
algorithm has been implemented (named as simplified NFx-
NLMS, in dashed line and with square markers), which uses
a virtual channel which depends only on these linear compo-
nents. The step sizes are set to µ1 = µ2 = 0.1. Although the
three adaptive filters exhibit a similar convergence rate, that is
even faster for the Fx-NLMS, only the NFx-NLMS approach
has a stable behavior. Thus, a suitable design of the virtual
path is essential in this context.

To study the behavior of the NFx-NLMS algorithm with
a high degree of nonlinearities, α = 7 has been used to pro-
vide a LNLR of 0 dB. Fig. 7 shows the evolution of EMSE,
with µ1 = µ2 = 0.01. As it can be observed, the NFx-NLMS
filter exhibits a stable behavior reaching a steady-state EMSE
of approximately −11 dB. Furthermore, the simplified and
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Fig. 8. Adaptive linear and second-order Volterra filters.

linear algorithms are also shown, which exhibit a bad perfor-
mance as expected. The adaptive filter coefficients obtained
for the NFx-NLMS algorithm at steady state are shown for
each kernel in Fig. 8.

5. CONCLUSIONS

A novel nonlinear filtered-x adaptive algorithm has been pro-
posed for room equalization to compensate both room rever-
beration and nonlinear distortion with memory. The new ap-
proach is based on the development of a novel time-varying
virtual filter that avoids problems of instability due to filter
delays.

The effectiveness and robustness of the NFx-NLMS algo-
rithm has been evaluated in terms of the EMSE for different
LNLR values. The proposed approach outperforms the linear
Fx-NLMS type algorithm even with high LNLR conditions.
Moreover, it exhibits a good performance for low LNLR.
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