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ABSTRACT

The investigation of bone fragility diseases, as osteoporo-
sis, is based on the analysis of the trabecular bone micro-
architecture. The aim of this paper is to improve the in-vivo
trabecular bone segmentation and quantification by increas-
ing the resolution of bone micro-architecture images. We
propose a semi-blind joint super-resolution/segmentation ap-
proach based on a Total Variation regularization with a con-
vex constraint. A comparison with the bicubic interpolation
method and the non-blind version of the proposed method is
shown. The validation is performed on blurred, noisy and
down-sampled 3D synchrotron micro-CT bone images. Good
estimates of the blur and of the high resolution image are
obtained with the semi-blind approach. Preliminary results
are obtained with the semi-blind approach on real HR-pQCT
images.

Index Terms— Semi-blind super-resolution, segmenta-
tion, Total Variation, 3D micro-CT, bone micro-architecture.

1. INTRODUCTION

In the context of osteoporosis, the trabecular bone micro-
architecture is known to be an important determinant of bone
strength. However, its analysis from in-vivo CT images re-
mains most of the time limited due to the lack of spatial
resolution. This is related to the very small size of the tra-
beculae (mean thickness of about 120 pm) compared to the
resolution of CT scanners.

New High Resolution peripheral Quantitative CT (HR-
pQCT) devices with improved spatial resolution are currently
available in a number of pilot research sites in the world [3,6].
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This technique typically provides 3D images of bone with an
isotropic voxel size of 82 pm.

After binarization, quantitative parameters of trabecular
bone architecture can be extracted. They include morphome-
tric parameters such as the bone volume to total volume ratio,
mean trabecular thickness, mean trabecular spacing, as well
as nonmetric parameters like the density of connectivity. Nev-
ertheless, by comparing this technique to micro-CT at higher
spatial resolution, it was shown that some of these parameters
were particularly sensitive to the segmentation [10]. Then,
since the spatial resolution of this system remains close to the
trabeculae size, the segmentation of trabecular bone continues
to be an issue.

In this paper, we will present our investigations to im-
prove the quality of trabecular bone micro-CT images based
on super-resolution techniques. Conversely to standard super-
resolution methods, our input is a single low spatial resolution
image for which we expect to recover a higher spatial reso-
Iution image. Since the final goal is to obtain a binary im-
age of trabecular bone, we consider solving the joint super-
resolution/segmentation problem.

We shall first summarize the approach developed using a
prior based on Total Variation with a convex relaxation of the
binary constraint (TVbox). We provided an algorithm based
on Alternating Direction Method of Multipliers (ADMM) al-
gorithm, which is one of the state of-the-art method for TV
regularization [1,14,21]. First results were obtained on exper-
imental micro-CT images used as ground truth and degraded
with a known blur kernel [20]. Since the trabecular bone im-
ages are displaying quasi-binary structures, a TV prior was
preferred. The results show an improvement in images and
particularly a better preservation of connectivity.

However, when considering real data, the problem is
more complex since the blurring kernel is not known and
may be difficult to estimate. Several methods have been pro-
posed for the simultaneous recovery of the image and of the
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point spread function (PSF), like bayesian methods [2, 13],
Tikhonov regularization [22] or Total Variation (TV) regular-
ization [2,7, 11]. Estimating the unknown image and some
partially known PSF is referred to as semi-blind deconvolu-
tion [9, 12].

Thus, we finally address the problem of semi-blind joint
super-resolution/segmentation aiming at estimating both the
segmented super-resolved image and the gaussian blurring
kernel. Preliminary results on experimental HR-pQCT im-
ages are presented.

2. JOINT SUPER-RESOLUTION / SEGMENTATION

2.1. Direct problem

The direct problem is formulated as follows. Let g € RY be
the observed 3D low-resolution discrete image with N voxels.
Let f € RN "with N = N p3, be the super-resolved image
where p is the over-sampling factor. The relationship between
f and g is given by a linear operator, A, combining the effects
of down-sampling and blurring. By assuming that the image
is corrupted by an additive noise, the direct problem can be
expressed as :

g=Af+n, (1)

where n is a centered Gaussian noise with standard deviation
On.

2.2. Proposed minimization

In order to solve this inverse problem, we first proposed to
introduce a TV prior on the image. The conventional TV
regularization scheme consists in minimizing the following
functional:

J(f) = SIAf = gll; + IV 1. @

where p is a regularization parameter. Since our final aim
is to combine super-resolution and segmentation, we assume
that the segmented super-resolved image is binary and takes
two values, cg and ¢;. Let B = {co, ¢}V ', the minimization
problem becomes:

f =argmin{J(f), f € B}. 3)

Convexified models obtained by relaxation of the binary
constraint have often been considered for segmentation tasks
[4,5,18]. We used the same type of method and we pro-
posed to solve an approximate minimization problem by re-
laxing the binary constraint and searching for a quasi-binary
graylevel image with graylevels in the range [co, ¢1] [20]. This
yields to a convex problem:

f=argmin{J(f), f € [co, )]V} “)
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This problem was solved by using an ADMM algorithm. The
augmented Lagrangian was written as :

La(Fo ARk (A A0) = G IAF —alls + D ]l )
8 2y
+;[2”hiDif| )‘i(hiDi.f):|

(k) + Dk~ £I3 — Aotk — )
with \; the Lagrange multipliers for the " equality con-
straint, A¢c the Lagrange multiplier for convex constraint, 3
the augmented Lagrangian parameter and I is the indicator
function of the convex set C = [co, ¢1]"'. The auxiliary h;
and k are used to take into account the two constraints. The
optimal image is obtained by successive minimizations of the
Lagrangian with respect to f, the auxiliary variables and to
the Lagrange multipliers [20].

3. SEMI-BLIND JOINT SUPER-RESOLUTION/
SEGMENTATION

In this work, we have extended the non-blind approach pre-
sented in [20] to a semi-blind estimation of the blurring kernel
and of the high resolution segmented image.

3.1. Direct problem

In the general case, solving the blind super-resolution prob-
lem requires to estimate both f and the blurring operator from
(1). In this first approach, we assume that the blur is isotropic
and can be represented by a 3D Gaussian kernel:

a(z,y,2) = ag(T)as (y) s (2) (6)

where o, () is the 1D Gaussian kernel of standard deviation
o. The problem in now reformulated as a semi-blind problem:

{}‘70} = arg min{J(f,U), .f € [007 Cl]Nla o> 0} @)
where J( f, o) includes the dependence of the blurring kernel
ono.

3.2. Minimization algorithm

We note that the cost function is convex with respect to f, but
not convex with respect to the standard deviation o. Thus,
in order to find the solution {f,c} that minimizes the cost
function (7), we apply the alternating minimization scheme:

Step 0: Choose a starting sigma value o(©) | t=0
Step 1: t=t+1, Refine the image:

f(t) = arg min
Feleo,c]V

Blang g +1vslh ®
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where A®~Y s the direct operator at the step t-1.
Step 2: Refine the blur:

(t) : (t) 2
o'/ = arg min HA(J)fOl — gH2 9
where f; is the binary version of f.

Step 3: Go to step 1 until convergence.

We perform the minimization of (8) with the ADMM scheme
presented in [20]. At step 2, the Newton method is applied
for obtaining the solution o(*). A local optimum is obtained
since the regularization functional is not a convex function of
.

4. NUMERICAL EXPERIMENTS

4.1. Experiments on simulated images

We first consider simulations based on experimental micro-
CT images of bone samples artificially blurred and under-
sampled. Human bone samples (cylinder core of 10 mm)
were imaged using parallel-beam synchrotron micro-CT at
10 wm. The images were reconstructed from 1500 2D pro-
jections using the Filtered back projection algorithm [19] and
further resampled at 20 um. These 3D images considered
as ground truths, were blurred with a Gaussian kernel with
a standard deviation ¢ = 2.4 and down-sampled at 40 um
(p=2). Gaussian noise level with standard deviation o,, = 0.1
was added to the image. The method was tested on a Volume
of Interest (VOI) of (328)3 voxels. Considering the bimodal
histogram of the ground truth volume, the binary version of it
was obtained with Otsu’s method [17].

The semi-blind super-resolution/segmentation method
was applied using the TV regularization with box constraints.
An extensive sweeping of the regularization parameters was
performed in order to show that this method can be useful
to recover the high resolution segmented ground truth. For
a fixed regularization parameter u, the parameter 3 is cho-
sen in order to have the fastest decrease of the regularization
functional.

For each method, the regularization parameter p chosen
is the one that maximizes the DICE value [8] between the
binary ground truth and the segmented reconstructed volume
obtained with the threshold 0.5. For comparison reasons, the
low resolution volume and the bicubic interpolation volume
were segmented with Otsu’s method. The performance of the
methods was measured considering the DICE value and also
the quantitative bone micro-architecture parameters such as
the bone volume to total volume (BVTV in % ), the Euler
number () [16] and the density of connectivity (dconn in
mm=3) [15].

The results are presented in Figures 1-2 and Table 1.
Slices and a 3D rendering of a cropped volume are displayed.
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4.2. Experiments on real images

We present preliminary work on experimental data. 3D im-
ages of human radius samples were acquired on a HR-pQCT
system from 750 projections and reconstructed at an isotropic
voxel size of 82 um. The same samples were also scanned us-
ing a micro-CT system providing 3D images at 24 ym. The
HR-pQCT images were registered to the ground truth micro-
CT images. Figure 3 (a) and (b) show a region of interest
(ROI) within the micro-CT image resampled at 41 ym and
the original HR-pQCT image at 82 ym. With real data, only
the semi-blind TVbox approach could be applied. Figures 3
(c) and (d) respectively show the bicubic interpolated slice
and a first result of the super-resolved TVbox image with the
up-sampled factor p=2. The best results were obtained with
the initial value of the o(?)=0.5. We may note that the Dice
index is increased with the TVbox method (0.7 versus 0.61).

5. CONCLUSION

In this paper, we proposed a semi-blind joint super-resolution/
segmentation method based on the Total Variation regular-
ization with convex constraint and ADMM minimization for
improving the trabecular bone micro-structure quantifica-
tion from micro-CT volumes. We compared this semi-blind
TVbox approach with the standard interpolation method in
terms of DICE and structural parameters. For artificially dete-
riorated Synchrotron images a comparison with the non-blind
TVbox method is performed. We showed that our semi-blind
method is improving the structural parameters compared to
the original one and also that we efficiently estimate the blur
kernel. It outperforms clearly the interpolation method. Pre-
liminary results show that the approach can be applied to real
HR-pQCT images for which we have a ground truth image.
In further work, we shall address the optimization of the pa-
rameters of the algorithm and particularly the choice of ¢y and
c; used for box constraints. We will also consider anisotropic
and spatially varying blurring kernel. Other segmentation
methods to obtain the binary version of the low resolution
image and bicubic interpolation will be investigated.
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(a) Ground-truth volume (b) Low resolution volume (c) Bicubic interpolation (d) TVbox regular.  (e) semi-blind TVbox regular.

Fig. 1. Comparison of 3D restoration methods on experimental synchrotron volume.

(a) Ground-truth slice

(b) Low resolution slice (c) Bicubic interpolation (d) TVbox regular.  (e) semi-blind TVbox regular.

Fig. 2. Slice of the restored experimental synchrotron volume.

Parameter Ref. Low resolution Bicubic Interpolation TVbox semi-blind TVbox
DICE 1 - 0.773 0.908 0.915
Euler no. -1211 4888 11201 =722 -753
dconn mm—3) 4.86 16.61 11.98 4.20 4.22
BVTV (%) 11.07 16.48 16.38 11.50 11.45

Table 1. Quantitative parameters.
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(b) HR-pQCT slice (c) Bicubic interpolation (d) semi-blind TVbox regular.

Fig. 3. Slice of the restored HR-pQCT volume.

tative computed tomography”, J. Clin. Endocrinol.
Metab., vol. 90, no. 12, pp. 6508-15, 2005.

X. Bresson, S. Esedoglu, P. Vandergheynst, J. P. Thiran
and S. Osher, Fast global minimization of the active
contour/snake model, Journal of Mathematical Imaging

(5]
(4]

2864

and Vision, 28 (2007) 151-167.

E. S. Brown, T. F. Chan and X. Bresson, Completely
convex formulation of the Chan-Vese image segmenta-

tion model, International Journal of Computer Vision,
(2011) 1-19.



(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

23rd European Signal Processing Conference (EUSIPCO)

A. J. Burghardt, J.-B. Pialat, G. J. Kazakia, S. Boutroy,
K. Engelke, J. M. Patsch, A. Valentinitsch, D. Liu, E.
Szabo, C. E. Bogado, M. B. Zanchetta, H. A. McKay,
E. Shane, S. K. Boyd, M. L. Bouxsein, R. Chapurlat,
S. Khosla, and S. Majumdar, ’Multicenter precision of
cortical and trabecular bone quality measures assessed
by high-resolution peripheral quantitative computed to-
mography”, J Bone Miner Res, vol. 28, no. 3, pp. 524-
36, 2013.

T. F. Chan and C. K. Wong, "Total variation blind de-
convolution”, IEEE Transactions on Image Processing,
vol. 7, pp.370-375, 1998.

L. R. Dice, ”Measures of the amount of ecologic as-
sociation between species”, Ecology, vol. 26, no.3, pp.
297-302, Jul. 1945.

N. P. Galatsanos, V. Z. Mesarovic, R. Molina, A. K.
Katsaggelos, J. Mateos, “Hierarchical Bayesian image
restoration from partially known blurs”, IEEE Trans.
Image Process., vol.9, pp. 1784-1797, 2000.

M. Krause, O. Museyko, S. Breer, B. Wulff, C. Duck-
stein, E. Vettorazzi, C. Glueer, K. Pschel, K. Engelke,
and M. Amling, “Accuracy of trabecular structure by
HR-pQCT compared to gold standard CT in the radius
and tibia of patients with osteoporosis and long-term
bisphosphonate therapy”, Osteoporos Int, vol. 25, no.
S, pp- 1595-606, 2014.

H. Liao and M. K. Ng, ”Blind deconvlution using gen-
eralized cross-validatin approach to regularization pa-
rameter estimation”, IEEE Transactions on Image Pro-
cessing, vol. 20, pp. 670-680, 2011.

R. Molina, ”On the hierarchical Bayesian approach
to image restoration: applications to astronomical im-
ages”, IEEE Trans. Patterns Anal. Mach. Intell. , vol.16,
pp- 1122-1128, 1994.

R. Molina, J. Mateos an A. K. Katsaggelos, “Blind
deconvolution using a variational approach to parame-
ter, image and blur estimation”, IEEE Transactions on
Image Processing, vol.15, pp. 3715-3727, 2006.

2865

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

MK. Ng, P. Weiss and X. Yuan, ”Solving con-
strained total-variation image restoration and recon-
struction problems via alternating direction mehthods”,
SIAM J. Sci. Comput., vol. 32, pp. 2710-2736, 2010.

A. Odgaard, "Three-dimensional methods for quantifi-
cation of cancellous bone architecture”, Bone, vol 20,
no. 4, pp. 315-28, 1997.

J. Ohser, W. Nagel and K. Schladitz, ”Miles formulae
for boolean models observed on lattices”, Image Anal.
Stereol., vol. 28, no. 2, pp. 77-92, 2009.

N. Otsu, A threshold selection method from gray-
level histograms”, IEEE Trans. Sys., Man. Cyber., vol.
9, no.1, pp. 62-66, 1979.

G. Paul, J. Cardinale and I. F. Sbalzarini, “Coupling
image restoration and segmentation: A generalized lin-
ear model/Bregman perspective”, Int. J. Comput. Vis.,
vol. 104, pp. 69-93, 2013.

M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. M.
Laval-Jeantet, J. Baruchel and P. Spanne, “A syn-
chrotron radiation microtomography system for the
analysis of trabecular bone samples”, Med. Phys., vol.
26, no. 10, pp. 2194-2204, Oct. 1999

A. Toma, L. Denis, B. Sixou, J.-B. Pialat and F.
Peyrin, ~Total variation Super-resolution for 3D trabec-
ular bone micro-structure segmentation”, EUSIPCO,
pp- 2220-2224, 2014

J. Yang, W. Yin, Y. Zhang and Y. Wang, A fast algo-
rithm for edge-preserving variational multichannel im-
age restoration”, SIAM J. Imaging Sci., vol. 2, pp. 569-
592, 2008.

Y. You and M. Kaveh, “A regularization approach to

joint blur identification and image restoration”, IEEE
Transactions on Image Processing, vol.5, pp. 416-427,
1996.



