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ABSTRACT

Low image resolution will be a predominant factor in iris
recognition systems as they evolve towards more relaxed ac-
quisition conditions. Here, we propose a super-resolution
technique to enhance iris images based on Principal Com-
ponent Analysis (PCA) Eigen-transformation of local image
patches. Each patch is reconstructed separately, allowing bet-
ter quality of enhanced images by preserving local informa-
tion and reducing artifacts. We validate the system used a
database of 1,872 near-infrared iris images. Results show the
superiority of the presented approach over bilinear or bicu-
bic interpolation, with the eigen-patch method being more re-
silient to image resolution reduction. We also perform recog-
nition experiments with an iris matcher based 1D Log-Gabor,
demonstrating that verification rates degrades more rapidly
with bilinear or bicubic interpolation.

Index Terms— TIris hallucination, iris recognition, eigen-
patch, super-resolution, Principal Component Analysis

1. INTRODUCTION

Iris has been shown as one of the most accurate biometric
traits for human identification [1]. However, there is an in-
creasing pressure towards relaxing acquisition conditions to
allow acquisition ‘at a distance’ and ‘on the move’ [2]. This
poses additional problems to the quality of acquired images,
with the lack of pixel resolution the most evident. This paper
addresses the problem of up-sampling, or increasing the size
of a low-resolution image, which is due to for example a long
acquisition distance to the object of interest. Low resolution
is also an issue when bandwidth or storage limitations exist,
such as in remote surveillance systems, personal devices or
smartcards. In these cases, images are usually compressed
e.g. via JPEG2000 [3], but image dimensions are kept con-
stant. Nevertheless, resolution losses due to image compres-
sion are not within the scope of this paper.

Super-resolution (SR) techniques aim to reconstruct the
missing high resolution (HR) image Y given a low resolu-
tion (LR) image X. The LR image is modeled as the cor-
responding HR image manipulated by blurring (B), warping
(W) and down-sampling (D) as X = DBWY + 7 (7 rep-
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resents additive noise). For simplicity, some works omit the
warp matrix and noise, leading to X = DBY. Two main
SR approaches exist: reconstruction- and learning-based [4].
In reconstruction-based, sub-pixel shifts among multiple LR
images are fused to obtain a HR image, therefore several LR
images are needed as input. Alternatively, in learning-based
approaches, the relationship between LR and HR images of a
training database is modeled, and reconstruction can be done
with only one LR image as input. Learning approaches gen-
erally outperform reconstruction methods and achieve higher
magnification factors. Recently, SR techniques have been ap-
plied to biometric systems. Since Baker and Kanade first sug-
gested SR algorithms specifically for faces [5], there has been
a lot of research in face super-resolution (also called hallu-
cination) [6]. Learning approaches have been also used with
other biometrics such as iris [7-9]. However, one major limi-
tation is that they try to develop a prototype iris using combi-
nation of complete images. Eigen-patches is a strategy which
models a local patch using collocated patches from a dictio-
nary, instead of using the whole image. Each patch is hallu-
cinated separately, providing better quality reconstructed pro-
totypes with better local detail and lower distortions.

This paper describes an iris super-resolution technique
based on PCA hallucination of local patches inspired by
the system of [10] for face images, referred to as Eigen-
transformation of local image patches. A PCA Eigen-
transformation is conducted in each image patch of the input
LR image. The HR patch is then reconstructed as a lin-
ear combination of collocated HR patches of the training
database. This way, every patch has its own optimal re-
construction coefficients, allowing to preserve local image
information. Prior to the hallucination process, iris images
are aligned with respect to the pupil center, since alignment
is critical for the performance of SR systems. We use the
CASIA-IrisV3-Interval database [11] of NIR iris images for
our experiments. The presented hallucination system is su-
perior to bilinear or bicubic interpolation, showing more
resiliency to down-sampling. We also conduct verification
experiments with a iris matcher based on 1D Log-Gabor
wavelets, observing that recognition rates degrade more
rapidly with bilinear or bicubic interpolation as resolution
decreases. It is also shown that recognition performance is
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not degraded significantly until a down-sampling factor of
1/8 or higher (this represents iris images of only 2929 pix-
els). This allows for example to reduce the storage or data
transmission requirements, two important requirements for
biometric technologies to achieve massive adoption [2].
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Fig. 1. Structure of the eigen-patch iris hallucination system.

2. IRIS HALLUCINATION METHOD

The structure of the hallucination method is shown in Fig-
ure 1. It is based on the eigen-patch hallucination method for
face images of [10]. The system is described given next.

2.1. Eigen-Patch Hallucination

Given an input low resolution (LR) iris image X, it is first sep-
arated into N overlapping patches {Z} = {71,732, -+ , TN}
Two super sets of basis patches are computed for each LR
patch T;, separate from the input image X, from collocated
patches of a training database of high resolution images { H }.
{zg;g;,..7z§i}
collocated (HR) patches. By degradation (low-pass filtering
and down-sampling) a low resolution database {L} is ob-
M

One of the super sets, , 1s obtained from

tained from {H}, and the other super set, {l 12

is obtained similarly, but for {L}. M is the size (number of
images) of the training set. A PCA Eigen-transformation is
then conducted in each input LR patch T; using the col-

L2 IM} of the LR facial train-

located patches { Ll
ing images to obtain the optimal reconstruction weights
¢ = {c},cZ,---,c¢M} of each patch (see Figure 2). By
allowing each LR patch of the input image to have its own
optimal reconstruction weights, the HR patch will be closer
to the input LR patch, therefore more local information can
be preserved and less reconstruction artifacts appear. Once
the reconstruction weights ¢; of each patch are obtained, the
HR patches are rendered using the collocated patches of the
HR images of the training set {ﬁ} The reconstruction coef-
ficients of the input image X using the LR patches is carried

on to weight the HR basis set, which yields the preliminary
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reconstructed HR iris image 7/, after averaging the overlap-
ping regions. Additional details of this Eigen-transformation
procedure can be obtained in [10].
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Fig. 2. Eigen-patch hallucination step.
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Fig. 3. Resulting HR hallucinated images for different down-
sampling factors and patch sizes (patch size is indicated in
proportion to the size of the input LR image). The original
HR image is also shown (bottom right).

2.2. Image Re-projection

A re-projection step is applied to Y’ to reduce artifacts and
make the output image Y more similar to the input image
X. The image Y is re-projected to X via AR v
TU (B (DB?t - Y)) where U is the upsampling matrix.

The process stops when |?t+1 — 7t| is smaller than a thresh-
old. We use 7=0.02 and 105 as the difference threshold.

3. IRIS MATCHER

We conduct matching experiments of iris texture using 1D
log-Gabor filters [12]. The iris region is unwrapped to a nor-
malized rectangle of 20 %240 pixels using the Daugman’s rub-
ber sheet model [13] and next, a 1D Log-Gabor wavelet is
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I Full image | Unwrapped iris region I
LR size Our method (patch size) Our method (patch size)
(scaling) H bilinear | bicubic | 1/4 | 1/8 [ 1/16 | 1/32 || bilinear | bicubic | 1/4 [ 1/8 [ 1/16 | 1/32 |
115x115 | psnr 33 34.04 3423 | 34.65 | 34.62 | 34.11 36.94 38.22 38.77 | 39.15 | 39.1 38.59
(1/2) ssim 091 0.93 0.92 0.93 0.94 0.93 0.96 0.97 0.97 0.97 0.97 0.97
57x57 psnr 28.36 29.18 2991 | 299 | 29.53 | 28.78 31.64 32.35 32.69 | 32.72 | 32.38 | 31.83
(1/4) ssim 0.79 0.8 0.8 0.81 0.8 0.78 0.85 0.87 0.88 0.88 0.88 0.86
39%x39 psor 26.21 26.8 2798 | 28.05 | 27.86 | 27.61 29.61 30.21 30.71 | 30.85 | 30.73 | 30.64
(1/6) ssim 0.73 0.74 0.74 0.75 0.75 0.75 0.79 0.81 0.81 0.82 0.82 0.82
29x%x29 psor 24.86 25.33 26.73 | 26.55 | 26.16 - 28.18 28.74 29.57 | 29.49 29.2 -
(1/8) ssim 0.69 0.7 0.71 0.71 0.7 - 0.74 0.75 0.77 0.77 0.76 -
23x%x23 psnr 23.94 24.41 25.76 | 25.62 | 25.24 - 27.09 27.63 28.69 | 28.47 | 28.11 -
(1/10) ssim 0.67 0.68 0.69 0.69 0.67 - 0.7 0.71 0.73 0.72 0.71 -
19x 19 psar 23.24 23.71 25.12 | 2495 | 24.57 - 26.21 26.71 27.88 | 27.53 | 27.18 -
(1/12) ssim 0.65 0.66 0.68 0.67 0.65 - 0.66 0.68 0.69 0.68 0.67 -
17x17 psor 22.85 23.32 24.69 | 24.05 - - 25.72 26.22 27.39 | 26.53 - -
(1/14) ssim 0.64 0.65 0.66 0.64 - - 0.65 0.66 0.67 0.63 - -
15x15 psnr 22.39 22.86 24.32 | 24.17 - - 25.16 25.64 26.99 | 26.79 - -
(1/16) ssim 0.64 0.64 0.66 0.65 - - 0.63 0.64 0.66 0.65 - -
13x13 psnr 21.8 22.25 23.94 | 23.69 - - 24.43 24.87 26.36 | 26.22
(1/18) ssim 0.63 0.63 0.65 0.65 - - 0.6 0.62 0.63 0.63 - -

Table 1. Hallucination results with different down-sampling factors and different patch sizes (average values on the test dataset).
Patch size is indicated in proportion to the size of the input LR image.

applied plus phase binary quantization to 4 levels. Matching
between binary vectors is done using the normalized Ham-
ming distance [13], which incorporates noise mask, so only
significant bits are used. Rotation is accounted for by shifting
the grid of the query image in counter- and clock-wise direc-
tions, and selecting the lowest distance, which corresponds to
the best match between two templates. The iris region and
corresponding noise mask is obtained by manual annotation
of the database used (see next section).

4. EXPERIMENTAL FRAMEWORK

We use the CASIA Interval v3 iris database [11] for our ex-
periments. This database has 2,655 NIR images of 280x320
pixels from 249 contributors captured in 2 sessions with a
close-up iris camera, totalling 396 different eyes (the number
of images per contributor and per session is not constant).
Manual annotation of this database is available [14, 15],
which has been used as input for our experiments. All images
of the database are resized via bicubic interpolation to have
the same sclera radius (we choose as target radius the aver-
age sclera radius R=105 of the whole database, given by the
groundtruth). Then, images are aligned by extracting a square
region of 231x231 around the pupil center (corresponding
to about 1.1x R). In case that such extraction is not possible
(for example if the eye is close to an image side), the image is
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discarded. After this procedure, 1,872 images remain, which
will be used for our experiments.

The dataset of aligned images has been divided into two
sets, a training set comprised of images from the first 116
users (M=925 images) used to train the eigen-patch halluci-
nation method, and a test set comprised of the remaining 133
users (947 images) which is used for validation. We perform
verification experiments with the iris matcher in the test set.
We consider each eye as a different user. Genuine matches are
obtained by comparing each image of a user to the remaining
images of the same user, avoiding symmetric matches. Im-
postor matches are obtained by comparing the 1% image of a
user to the 2" image of the remaining users. With this pro-
cedure, we obtain 2,607 genuine and 19,537 impostor scores.

S. RESULTS

The 947 iris images of the test set are used as our high resolu-
tion (HR) reference images. We then down-sample these im-
ages via bicubic interpolation by a factor of 2n (i.e. the image
is resized to 1/(2n) of the original HR size), and the down-
sampled images are used as input LR images, from which hal-
lucinated HR images are extracted. We also extract the nor-
malized iris region (size 20x240) from both the hallucinated
HR and the reference HR images, according to the algorithm
of Section 3. The performance of the hallucination algorithm
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Scenario 1 (original vs. down-sampled)

Scenario 2 (down-sampled vs. down-sampled)

Our method (patch size) Our method (patch size)
LR size (scaling) bilinear | bicubic 174 1 178 11716 [ 1732 bilinear [ bicubic [ 1/4 | 1/8 [ 1/16 | 1/32
no downsampling 0.76 0.76
115x115 (1/2) 0.69 0.69 0.76 0.73 | 0.73 | 0.76 0.61 0.73 0.73 | 0.72 | 0.76 | 0.76
57x57 (1/4) 0.69 0.68 0.8 0.73 | 0.68 | 0.77 0.76 0.65 0.69 | 0.68 | 0.69 | 0.69
39x39 (1/6) 1.09 0.88 0.76 0.73 | 0.73 | 0.66 1.07 0.83 0.76 | 0.70 | 0.92 | 0.83
29x29 (1/8) 1.61 1.42 1.11 1.15 | 1.08 - 2.38 1.88 1.18 | 1.24 | 1.44 -
23x%23 (1/10) 3.03 2.74 1.84 2.00 | 2.19 - 5.25 4.41 1.89 | 2.20 | 2.82 -
19%x19 (1/12) 4.96 4.48 3.40 3.86 | 4.33 - 8.17 7.23 349 | 3.53 | 4.78 -
17x17 (1/14) 6.41 5.72 5.21 7.05 - 9.86 941 4.29 | 647 - -
15x 15 (1/16) 10.39 9.59 7.29 7.72 - 11.03 11.25 | 479 | 5.90 - -
13x13 (1/18) 15.54 13.79 12.00 | 11.86 - 12.40 12.23 | 6.44 | 6.94 - -

Table 2. Verification results (EER) of the two scenarios considered for different down-sampling factors and patch sizes (patch

size is indicated in proportion to the size of the input LR image).
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Fig. 4. Hallucination results with different down-sampling
factors (the best performing patch size of each case accord-
ing to Table 1 is selected).

is measured by computing the PSNR (in dBs) and SSIM val-
ues between the hallucinated HR image and the correspond-
ing HR reference image. Results are shown in Table 1. In
the described hallucination method, size of LR patches is an
important parameter. We therefore test different patch sizes,
corresponding to 1/4, 1/8, 1/16 and 1/32 of the LR image size.
Note that the exact size of the patch (in pixels) will depend on
the size of the LR image. We define the patch size in pro-
portion to the dimensions of the LR image to ensure that they
cover the same relative size across different scaling factors.
Overlapping between patches is 1/3 of the patch size. We also
compare our method with bicubic and bilinear interpolation.
Figure 3 shows the hallucinated images (only for a selection
of down-sampling factors for the sake of space).

It can be seen from Table 1 that the eigen-patch hallu-
cination method outperforms the bilinear and bicubic inter-
polations, with the difference being higher for bigger down-
sampling factors. In other words, the eigen-patch method is
more resilient as image resolution decreases. The latter can
be better assessed in Figure 4 where we plot the results of Ta-
ble 1 (the best performing patch size of each down-sampling
factor, marked in bold, is selected). Although bilinear or bicu-
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bic interpolations have similar performance for small down-
sampling factors, the advantage of the utilized eigen-patch
hallucination is more evident when the resolution of the LR
image becomes very low. This can be also appreciated in the
examples of Figure 3, where the blurring of bilinear and bicu-
bic interpolations at very low resolutions is clearly evident.

With regards to the appropriate patch size, it can be ob-
served in Table 1 that the best results are obtained with a big
patch (1/4 or 1/8 of the LR image size, with 1/4 being the
best case at very low resolutions). A bigger patch allows a
smoother reconstruction due to averaging a bigger region (see
for example the case of 57x57 in Figure 3, with more artifacts
appearing for patch sizes of 1/16 or 1/32). It also has compu-
tational implications in terms of less patches to process per
image, although patches have a bigger size.

Scenario 1 (original vs. downsampled) Scenario 2 (downsampled vs. downsampled)

16
bilinear
14 bicubic
—our method
12
10
&8
6
4
2
00 2 8 10 12 14 16 18 0 2 4 8 10 12 14 16 18

4 6 6
Downsampling factor Downsampling factor

Fig. 5. Verification results (EER) of the two scenarios consid-
ered with different down-sampling factors (the best perform-
ing patch size of each case according to Table 2 is selected).

Next, we report verification experiments using halluci-
nated HR images. We consider two scenarios: 1) enrolment
samples taken from original HR input images, and query sam-
ples from hallucinated HR images; and 2) both enrolment
and query samples taken from hallucinated HR images. The
first case simulates a controlled enrolment scenario with good
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quality images, while the second case simulates a totally un-
controlled scenario (albeit for simplicity, enrolment and query
samples have similar resolution in our experiments). Results
are given in Table 2 for different down-sampling factors and
patch sizes. Similarly, the best cases (patch sizes) are plot in
Figure 5. It can be observed that the verification performance
using the proposed hallucination method is quite similar to bi-
linear and bicubic interpolations for small downsampling fac-
tors, but better performance is obtained with the hallucination
method at very low resolutions. This is specially evident for
the scenario 2, where the performance with bilinear or bicubic
interpolations degrades rapidly, whereas the proposed method
shows higher resiliency.

It is relevant that the performance of scenarios 1 and 2
with the proposed hallucination method is similar up to a
down-sampling factor of 1/12. In addition, performance is not
affected until a down-sampling factor of 1/8 (image size of
29x29). This suggests that the size of both query and test im-
ages can be kept low without sacrificing performance, which
is relevant for instance with devices having low storage ca-
pabilities or with low speed communication channels (recall
that original HR images have a size of 231x231). In addition,
from Figure 5 it can be observed that performance of sce-
nario 2 is much better than scenario 1 at very low resolutions.
When the size of input LR images is very low, the quality
of hallucinated HR images is fairly different than the qual-
ity of original HR images (see Figure 3). As a result of such
quality differences between enrolment and query images, it
is better to match hallucinated HR images among themselves
(scenario 2) than matching an hallucinated HR image against
an original HR image (scenario 1). These results should not
be taken as a general statement, since other iris matchers may
lead to a different result. However, decreases in performance
when matching biometric samples of heterogeneous quality
have been also observed in other studies, e.g. [16].

6. CONCLUSIONS

As iris recognition systems evolve towards more relaxed
acquisition conditions, variability in resolution will be-
come more common [1]. In this paper, we propose the
use of a iris super-resolution technique based on PCA Eigen-
transformation of local image patches (eigen-patches) [10]
to increase the resolution of iris images. Experimental re-
sults on a database of near-infrared iris images show the
superiority of the presented approach over bilinear or bicu-
bic interpolation, with the eigen-patch method being more
resilient to image resolution reduction. We also conduct iris
matching experiments on the hallucinated images with a tex-
ture matcher based on 1D Log-Gabor wavelets. We consider
two operational scenarios, one where original high-resolution
images are matched against hallucinated high-resolution im-
ages (controlled enrolment), and another scenario where only
hallucinated images are used (uncontrolled scenario). Ex-
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periments show that verification rates degrades more rapidly
with bilinear or bicubic interpolation. It is also observed that
recognition performance is not degraded significantly until
image is down-sampled by 1/8 or higher factors, allowing
to use both query and test images of reduced size. The lat-
ter is of importance for example under low storage or data
transmission capabilities. Future work includes separating
left and right eye images to train the PCA algorithm with the
aim of improving hallucination performance. The robustness
of the hallucination method against training sets smaller than
the one used here will also be studied, as well as the use
of data acquired in visible range and under non-frontal and
other perturbations. We will also explore the use of Manifold
Learning approaches which model the non-linear relations
between low and high resolution images.
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