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ABSTRACT

We present a method for real-time detection and classification
of impact sounds — relying solely on spatial features— that
exploits the difference in the location of each impacted struc-
ture. Using a compact sensor array, we formulate the clas-
sification problem in terms of an undetermined source sepa-
ration process where we assume that the linear mixing model
can be learned through a training phase. The recovered source
amplitudes are exploited for estimating the source activity in
time, and the detection and classification decisions are de-
rived based on simple energy criteria. Experimental results
with two sensors demonstrate the efficiency of the method in
an application scenario which considers the use of a simple
object as a real-time control interface for triggering a percus-
sion synthesizer.

Index Terms— impact sound, sensor array, gesture
recognition

1. INTRODUCTION

The sounds generated by humans are gaining more and more
attention in the context of control interfaces and applications.
Among the many different types of sonic gestures that we are
able to perform, impact sounds represent excellent acoustic
cues for conveying information. Moreover, our bodies and
our physical environment provide uncountable ways for pro-
ducing such sounds; we can clap our hands, snap our fingers
and we may hit almost any solid object around us. Using ap-
propriate sensors and machine learning techniques, we may
then train a computer to recognize our gestures in order to
perform predefined actions.

Undoubtedly, a great number of techniques which are re-
quired for the detection and classification of such gestures has
evolved through the need to analyse and extract information
from percussive sounds in audio signals. The transcription of
drum sounds in musical pieces can be seen as a low level de-
scriptor of musical content, which can then be exploited for
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tasks related to audio queries and content based management
systems (see [1] and references therein). Nevertheless, most
of the applications in this category do not obey to the time
constraints that Human-Computer Interaction (HCI) systems
are obliged to meet. Interactive systems using impact sound
as the input information have been developed in both mu-
sical and non-musical context. For example, a system able
to track percussion gestures was presented in [2], showing a
good adaptability to different instruments and acoustic condi-
tions, while other examples include an automatic accompani-
ment system [3] and a rhythmic tutoring system [4]. On the
other hand, Jylhd and Erkut developed a hand clap interface
for sonic interactions with the computer [5], while Vesa and
Lokki presented an interface which utilized two microphones
integrated to the headphones of the user and was capable of
detecting finger-snaps occurring on the left or right side of the
users head or in front of it [6].

Detection and classification of percussion sounds may be
also seen as a by-product of source separation, and several
works have considered the case of drum sounds separately
from other musical sources. Fitzgerald in [7] used the DUET
algorithm to separate percussive sounds from a stereo track
while Battenberg et al. used probabilistic spectral clustering
to separate drum sounds from mono recordings [8]. Finally,
“Drumatom” is a newly released commercial product capa-
ble of separating percussion sources in multi-track recordings
(http://www.accusonus.com).

Gestural control of sound synthesis [9] is an additional
field of research which benefits from human-generated sound
input. Here, the user’s gestures need to be recognized and au-
tomatically encoded to the control stream which is required
to trigger a sound synthesizer. The synthetic signal which is
produced may then be used in order to augment or to com-
pletely replace the physical sound of the object(s) being hit.
In the context of percussion gestures, two commercial prod-
ucts which can be found are “Mogees” (http://mogees.co.uk)
and “TableDrum” (by Dohi Entertainment), both of which ex-
ploit timbral features of the single input signal to associate
different gestures to different synthetic sounds. In a similar
way, Stefanakis et al., exploited the variability in the spectra
of the same object being hit at different locations in order to



23rd European Signal Processing Conference (EUSIPCO)

recognize different events [10]. We note however that none of
these approaches is able to handle simultaneous events, which
is often the case in real percussion performance.

In spite of the many different applications that may bene-
fit from the work presented in this paper, we also consider the
scenario of a real-time sound synthesis controller, which is
a particularly time-critical application among other HCI sce-
narios. Indeed, as Wessel and Wright state, the time between
a gesture and its computer generated audible reaction should
be below 10 milliseconds [11], which poses strict limitations
to the amount of information that can be extracted from the
sonic gesture before deriving a decision. Similar to [5], we
present an approach based on multiple sensors rather than just
a single sensor, and we rely solely on spatial features for dis-
criminating among the different events. Moreover, we evalu-
ate the classification performance under realistic playing con-
ditions, including densely-played and simultaneous events.
Since the observed sound signals are expected to overlap in
time, we propose a simple source separation approach for as-
sisting the classification process, relying on a linear mixture
model which is learned a-priori during a short training phase.
Experimental results are presented for the case of a wooden
table which is stroked by the user with the help of two metal-
lic rods.

2. METHODOLOGY

Assume an array with M sensors and the problem of detect-
ing and classifying N sources of impact sound. At each time
instant, the signal at the microphones will be a mixture of all
the active source sound signals convolved with the impulse re-
sponse of the room. Following [12], the mixing process may
be approximated in the time-frequency domain (TF) as

X(k,7) = H(k)S(k, 7), 1)

where 7 is the time frame index, k is the frequency bin, X =
[X1,..., Xar]T € CM is the signal at the microphones, H €
CM>*N s the mixing matrix and S = [S,..., Sy]T € CV
are the source amplitudes. Typically, the length of the anal-
ysis window used for the TF implementation should be long
enough in order to account for the reflections and reverber-
ation which are introduced by the acoustic environment. In
this paper, we consider a similar model for the mixing pro-
cess based on a shorter frame size as

X(k, 7o) = Ho(k)S(k, 70), 2)

where 7, denotes a time frame where an onset occurs and
H, = [h, 1, ..., h, ] is different from H in (1) in the sense
that it contains the mixing model characteristics correspond-
ing to a very short duration after the onset of a particular
event. Certainly, by doing so, important information might
be disregarded, but this is something that we may afford to
do because we are interested in classifying the events and not
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in separating them. The truncated mixing model H,, is esti-
mated by using an onset detection algorithm, as described in
the next section.

2.1. Mixing Model Estimation

We exploit the main assumption that both the impacted struc-
tures, the sensors and their locations are consistent in time and
therefore, the “spatial signature” of each impact sound source
can be estimated a-priori during a training phase where the
user is asked to excite a particular object (or impact region)
several times, ensuring that there is no overlap between suc-
cessive strikes. This ensures that the mixing vector charac-
teristics h,_, contain the direct path (and possibly some first
reflections) from the objects to the sensors but no latter part
of the impulse response.

Now, there are numerous methods for onset detection
which are suitable for musical signals and for the needs of
this paper we actually used the energy-based approach pro-
posed by Tan et al. [13]. We note that choice of the onset
detection method plays a trivial role here, as it is only re-
quired during the training phase. Detecting onsets from a
recording that contains clean transient signals shouldn’t be a
problem for any kind of onset detection algorithm.

Having detected the onset locations, the mixing model is
estimated by performing a phase- and amplitude-normalization
process well known in clustering approaches in blind source
separation [12]; the observation mixture of the jth training
instance is stored to the corresponding source collection as

(9) X —¢u
y; e ’n 3)
/ X[

where we have omitted time and frequency dependency for
convenience. Here, |||, represents the Euclidean norm and
¢z, 1s the phase at the first microphone. Now, assuming that
all J samples originate from the same source, the observa-
tions should cluster around the mixing vector h,, ;. The first
one would thus think is to average over all samples in the
same class in order to define one centroid in C™. However,
we have observed that in several cases there is significant vari-
ance in the samples and the centroids may be inaccurately es-
timated due to the presence of outliers. We therefore follow
a simple approach for removing such outliers. Recalling that
the J available samples are normalized, we define for each
training instance the consistency measure

1
=512 (557)
i

where (a,b) = a'’b denotes the dot product. Obviously,
C; < 1,Vj with the equality to 1 holding when all sam-
ples are identical. Assuming that most of the samples have
small distances from one another, outliers will appear with
a small value of consistency. We eliminate such outliers us-
ing an iterative procedure as follows. We calculate C; (k) for

; “)
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all j = 1,...,J. If all consistency values are above a given
threshold C,,;,, € (0, 1), we then stop and calculate the cen-
troid as the average of all samples. If not, we then find the
index j with the smallest consistency value, remove it from
the collection, update J < J — 1 and recalculate (4). The
procedure stops when all consistency values are above the
given threshold or when a minimum number of samples Jy
is reached. The mixing vector particular to the gth class is
then calculated as h, ; = Z}le v

2.2. Source Amplitude and Source Activity Estimation

Assuming that the mixing vectors h, 4, ¢ = 1,..., N have
been estimated from the previous step, we propose recover-
ing the source amplitudes using the W-disjoint Orthogonality
(WDO) assumption which is commonly exploited in source
separation and direction-of-arrival estimation problems [14,
15]. We basically assume that one impact sound source is
always dominant against the others at each time-frequency
point. The dominant source is found by searching for the
mixing vector which exhibits the highest correlation with the
observed mixture, e.g.,

q = argmax,, [(ho 4, X)[,¢=1,..., N. 5)
The gth source amplitude is then determined as S, = hg{ X
while for the other sources the amplitudes are set to zero. We
recognize here that the WDO assumption is not justified for
impact sounds. Considering their wideband characteristics, it
is very likely that the source amplitudes will not have a dis-
joint support in the frequency domain, especially in the case
of two simultaneous events. Nevertheless, this approach is
attractive because of its simplicity and its low computational
complexity.

Now, having separated the sources, the goal is to construct
an one-dimensional time-sequence, one for each source,
which describes each source’s presence in the mixture at each
time frame. We observed that a good measure for such a task
is the L1 norm of the vector containing the recovered source
amplitudes across a wide frequency range. We therefore de-
fine the source activity sequence, p,, which for the gth source
at the 7th time frame can be calculated as

kmax

PBREACRSIP

k=kmin

pq(T) = (6)

where k,,;, and k4, represent minimum and maximum fre-
quency indexes. In comparison to the L2 norm, the L1 norm
here favours sources that have a rich support in their recov-
ered amplitude vector, rather than large amplitudes at few
non-zero entries. Also, it is advantageous to disregard low
frequencies, as in these frequencies the acoustic modes tend
to decay slower and this may increase the overlap in the ac-
tivity sequences of successive events.
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Fig. 1. Signal at one of the sensors for a simultaneous event in
(a), source activity sequence in (b) and corresponding source
detection values in (c).

2.3. Source Detection and Labelling

Using the measure in (6), the problem can be transformed to
a binary classification task, where the presence or absence of
each source may be determined at each time frame accord-
ing to predefined activity thresholds. Ideally, the source ac-
tivity sequence should approximate a Dirac-delta function at
the onset of a particular event. In this paper, we also exploit
the first-order time-difference of the source activity sequence,
Apq(T) = pe(T) — pg(T — 1), which we call the detection se-
quence from now on. A necessary condition to have an onset
for the gth class at time 7 is that the conditions Apy(7) > Tap
and py(7) > T), are fulfilled simultaneously, where TA, and
T, are empirically defined positive thresholds.

Now, some practical constraints may be set which not
only improve the performance, but are also in accordance to
physical limitations related to human hearing and to human
percussive performance. First of all, at time 7, at most one
source may be detected but not a second one. While this
seems to be preventing the ability to detect two simultane-
ous events, tests performed with real recordings indicated that
even if the intention of the user was to perform two simulta-
neous strikes (one with each hand), the detection sequences
Apg(7) rarely overlapped. In Figure 1 we show a typical ex-
ample for the case of 5 sources and 2 microphones; while
sources 1 and 2 are excited “simultaneously”, the p, and Ap,
values are well discriminated in time in (b) and (c) respec-
tively.

Additional temporal and amplitude constraints were
found useful for allowing the system to respond to a wide
dynamic range and for preventing false-detections following
a strong attack. First, two successive onsets may be arbitrar-
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ily close in time, but onsets from the same class must be at
least T'A, analysis frames apart, with 7o, a positive integer.
This is helpful in order to avoid a “double onset” due to am-
biguities in the neighbourhood of a strong attack. For similar
reasons, a time-varying masking threshold is defined; assume
that source ¢ is the last one to be detected at time 7, and
let p,(7,) be its activity value. We define the exponentially
decaying threshold g(7) = ap,(7,)e’" ™) with 0 < a < 1
and o0 < 0 which sets a new lower bound for any upcoming
event; at any time instant, the source activity value must be
greater than both g(7) and T}, in order to admit an onset.
Potentially, this may lead to missing a weak strike following
a strong attack, but this is expected to have small perceptual
significance due to temporal masking phenomena of human
hearing.

Fig. 2. Experimental setup showing the five impact regions
and the two microphones.

3. EXPERIMENTAL RESULTS

Experimental results are presented for the case of five classes
and two sensors in an application scenario which considers a
real-time percussion controller. In this experiment there was
a single object, a wooden table, and the user was able to strike
it at 5 different impact regions by holding one metallic rod in
each of his hands, as shown in Fig. 2. Five small pieces of
yellow paper were placed as visual landmarks just below each
impact region. Two omnidirectional microphones (Shure 93)
were glued with blue-tack at the closest wall in front of the
table. The distance between the two sensors was 2.8 cm while
the distance between adjacent impact regions was 14 cm. As
seen from the center of the two sensors, the impact regions
spanned an angle from -40 to 40 degrees and the distance from
impact region 3 was approximately 40 cm. The recordings
took place in a small office with an estimated reverberation
time of 0.4 seconds.

During both the training and the testing phase, the acous-
tic events were recorded with a sampling frequency of 44.1
kHz. About 20 strikes per impact region were used for train-
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ing. For onset detection, we used a running Hanning window
of 128 samples length and 50% overlap. On the other hand,
the length of the analysis window which was used for obtain-
ing the source spatial images in (3) was 180 samples. The
consistency threshold C,,;,, was set to the value of 0.94 and
the mixing vectors for each impact region were calculated ac-
cording to the analysis in subsection 2.1.

We observed that the classification performance depends
a lot on the rhythmic context. For example, isolated and
sparsely-played events have less chances of not being de-
tected or being miss-classified, as there is little overlap be-
tween consecutive events. In an attempt to test more real-
istic conditions, we decided to perform two separate tests;
one scenario where two different impact regions are excited
alternately and one where two impact regions are excited
simultaneously. In both cases, each region is excited with
the same rod and the events are played close in time so that
there is non-trivial overlap between consecutive strikes. We
recorded phrases for all 10 pairwise combinations between
the five classes for each scenario. For the TF implementa-
tion we used an analysis window of 180 samples duration
and 50% overlap. The thresholds related to the classification
process were the same for both scenarios. In particular, T,
and Tz, were equal to 5 and 3 respectively, TA, was set to
5 analysis frames, a was equal to 0.5 and o was equal to
-0.041. The ks, and k4, values used in (6) corresponded
to frequencies of 1000 and 16000 Hz respectively.

As metrics of performance we use the precision rate and
recall rate, calculated as

Precision  — f correctly recognized events’ e
f detected events

Recall = f correctly recognized events ®)
B # total events )

where “total events” is the true number of events to be de-
tected. The classification scores are shown for each class in
Table 1 and 2 for the alternately-played and the simultane-
ous events respectively. As expected, simultaneously played
events represent a much more difficult challenge for the pre-
sented method, but the scores obtained are still satisfactory.
We observed that almost in all cases where an error occurred,
the classifier picked an impact region lying in between the
two locations that were actually excited. For example, when
regions 1 and 4 were excited, regions 2 and 3 had a lot of
chances of being falsely detected, which also explains why
class 3 has the lowest precision rate in Table 2. To our opin-
ion, this is an indication that the WDO assumption explained
in section 2.2 is not always fulfilled, which is somehow ex-
pected because the different events originate from the same
object and therefore exhibit little variability in their spectra.
Of additional concern in this experiment is the calculation
time required for applying the proposed method at each time
frame. Implemented in Matlab with an Intel Core i7 @3.4
GHz CPU, the average computation time required for pro-
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Source Total events Precision Recall
1 62 1.00 0.98
2 66 1.00 1.00
3 69 1.00 1.00
4 71 1.00 1.00
5 75 0.99 1.00
Table 1. Classification scores for alternately-played events.
Source Total events Precision Recall
1 112 1.00 0.94
2 116 0.96 0.94
3 112 0.87 0.96
4 116 0.96 0.96
5 116 0.99 0.93

Table 2. Classification scores for simultaneous events.

cessing a single time frame was 0.4 ms, which is well below
the actual duration of the time frame, equal to 4 ms in this
experiment. This verifies that the method is appropriate for a
real-time application.

4. CONCLUSION

A lot has been said and written about how to discriminate per-
cussive events based on their timbral differences but little on
how to classify them based on their spatial variability. In this
paper, the detection and classification of human-generated
impact sounds is accomplished simultaneously from the solu-
tion to a source separation problem. We have proposed using
a simple training phase for learning the instantaneous linear
mixing model, assuming a multiplicity of spatially distributed
impact sound sources and sensors whose locations are con-
sistent during the training and testing phase. An extension of
this work would be to explore more sophisticated techniques
for source amplitude recovery than the presented WDO ap-
proach, as well as to investigate approaches for estimating
the strike strengths. Finally, one of the major priorities of
the authors is to apply and evaluate the method in the case
of a real drum kit and also in more realistic “live” conditions
where other musical sources are also present.
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