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ABSTRACT
Dictionary learning and Sparse representation of signals

and images has been a hot topic for the past decade and aims
to help find the sparsest representation for the signal(s) at
hand. Typically, the Dictionary learning process involves
finding a large number of free variables. Also, the resulting
dictionary in general does not have a specific structure. In this
paper we use the ideas from Image Signature Dictionary and
General overlapping frames and proposed a flexible signature
dictionary. We show that the resulting signatures capture the
essence of the signal and can represent signals of their own
type very well in opposed to signals of other types.

Index Terms— dictionary learning, signature dictionary,
sparse representation

1. INTRODUCTION

1.1. Background

Dictionary learning and Sparse representation of signals and
images have attracted much attention in signal and image pro-
cessing community because of its applicability in various ar-
eas such as denoising, inpainting, compression and classifica-
tion [1]. The focus of this paper is a structure imposed dictio-
nary learning method in which the collection of free variables
of the dictionary can be regarded as a signature of the training
signal. A motivation for such an approach can be that sig-
nature dictionaries might be useful in a classification context,
either by using the learned signatures as features, or by using
the representation as features followed by a classifier.

Let x denote anN ×1 signal vector andD anN ×K ma-
trix called dictionary. The columns of D are called the atoms
of the dictionary. The element in row n, column k of D are
denoted by D(n, k). Letting K > N would make the recon-
struction equation, x = Dw an underdetermined system of
equations and D to an overcomplete or redundant dictionary.
We wish to approximate x as a linear combination of a few
of the atoms in D (x̂ = Dw), w is sparse K × 1 coefficient
vector. The solution for such problem can be formulated as:

w = argmin
w
‖x−Dw‖22 s.t ‖w‖0 ≤ s. (1)

Equation 1 has proven to be an NP-hard problem [2].
However, many methods have been proposed which can find
a suboptimal solution for this problem. Some find the solution
through greedy methods such as (Orthogonal) Matching Pur-
suit. Others relax the l0-norm to l1-norm and utilize convex
optimization such as LASSO [1].

The right choice of the dictionary can lead to better repre-
sentation of the signal, i.e. a more sparse representation with
less residual. For finding a proper dictionary we can choose
between prespecified or learned dictionaries.

Prespecified dictionaries based on known transforms like
discrete cosine transform (DCT) or wavelet based meth-
ods [3, 4] usually inhabit some structure on the dictionary
which sometimes allows for calculating the coefficients via
fast methods and compact memory usage during computa-
tion. A problem with prespesified dictionaries is that they
often are too general and hence may not produce good results
for some applications.

An alternative approach is to train the dictionary for the
problem at hand and hence represent a specific signal class
more efficiently. Such approach can be seen in Method of
Optimal Directions (MOD) by Engan et al. [5] and K-SVD
by Aharon et al. [6]. More recent dictionary learning meth-
ods include online dictionary learning by Mairal et al. (ODL)
[7], Recursive Least Squares Dictionary Learning Algorithm
(RLS-DLA) proposed by Skretting et al. [8] and many other
variants in later years.

Let X and W denote the concatenation of training vec-
tors and sparse coefficients respectively, i.e. xs and ws are
columns of X and W . For learning the dictionary, a training
set representative for the application should be available. The
dictionary learning task can in general be expressed as:

{D,W} = argmin
D,W

M∑
i=1

‖xi −Dwi‖22 s.t ‖wi‖0 ≤ s. (2)

Where M is the number of training vectors. Equation 2 is an
infeasible optimization problem and a common way to solve
such a problem is to view it as nested minimization and divide
it into two steps in a loop:
1. Fix D and find W using:
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wi = argmin ‖xi −Dwi‖22 s.t ‖wi‖0 ≤ s, 1 ≤ i ≤M .

2. Fix W and update the dictionary D.

The first step is sparse coding. The second step is dictio-
nary updating which is the focus of this paper.

Although using learned dictionaries has been advanta-
geous in many applications compared to using prespecified
dictionaries, they have downsides. For example, dictionary
learning algorithms are not suitable for large problem sets
i.e. large signal blocks. The reason is that there would be
a large number of free variables in the dictionary to learn,
which demands a very large training dataset in order to avoid
overfitting. Another issue is lack of structure in the resulting
dictionary. For some applications having a specific struc-
ture is highly desired. For example when representing image
blocks, we would like to have the same corresponding repre-
sentation for edges regardless of their orientation. Also when
dealing with long periodic signals, shift invariant structures
help limiting the number of free variables meaning that we
can handle larger problems.

1.2. Proposed method in relation to previous work

Efforts have been made to overcome the shortcomings of
learned dictionaries. For example imposing a specific struc-
ture on the dictionary. Among them the double sparsity
method by Rubinstein et al. [9], Image-Signature-Dictionary
(ISD) proposed by Aharon et al. [10], General overlapping
frames by Skretting [11] and ILS-DLA by Engan et al. [12]
are a few.

The proposed method is inspired from General overlap-
ping frames by Skretting and ISD by Aharon and Elad. Simi-
lar to ISD, we want to find a signature for the training signal,
reduce the number of free variables and also impose a struc-
ture on the dictionary. We want this signature to capture the
essence of the signal. Our formulation grants us more flexibil-
ity than ISD, thus we call it the Flexible Signature Dictionary
or FSD.

In the next section we derive the equations for the FSD.
Then we use its similarity to MOD and introduce the mini-
batch version, which we call mFSD. Section 3 shows the re-
sulting signatures from ISD, FSD and mFSD and how they re-
construct different signal classes. Finally section 4 concludes
this paper with a summary of the work and possible future
extensions.

2. FLEXIBLE SIGNATURE DICTIONARY

2.1. Deriving the equations for FSD

The following section is dealing with the dictionary updating
step. There are NK free variables in dictionaries learned by
MOD, KSVD and many other learning techniques for a D
of size N × K. In this paper we want to reduce this num-
ber to Q free variables where Q � NK. We also want to

imposes a structure on D similar to prespecified dictionaries
while learning the free variables. For doing so we relate the
elements of the dictionary in a linear fashion to these Q free
variables.

Let q denote the signature vector containing Q free vari-
ables. The elements in the dictionary matrix, D, are related
to the elements in q in the following way:

D(n, k) =

Q∑
j

gj(n, k)q(j). (3)

Where gj , 1 ≤ j ≤ Q are usually sparse N × Kmatrices
which determine the places in D where the jth free variable
is present as well as its weight. For example, for having a
shift invariant structure, on a 4 × 8 dictionary D, the gjs
will have a structure given by equation 4 where gj(n, k) =
(gcirc(n, k) == j). Where (a == b) is a logical expression
evaluating to 1 if it is true and 0 if it is false.

gcirc =


1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1
3 4 5 6 7 8 1 2
4 5 6 7 8 1 2 3

 (4)

The flexibility of the FSD is seen from the definition in
equation 3. In ISD, part of the signature forms each dictio-
nary atom, whereas in the formulation of equation 3, each
dictionary element maybe a linear combination of several of
the free variables in the signature q.

Using operator vec(·), which denotes a function reshaping
a matrix into a vector by stacking it column by column, and
defining

G = [vec(g1), vec(g2), . . . , vec(gQ)], (5)

equation 3 can be written as:

vec(D) = Gq. (6)

In other words, the dictionary, D, is related to the signa-
ture vector, q, through a mapping matrix, G.

Denoting X̂ as the approximation of the training vectors,
X , we can rewrite X̂ = DW using operator vec(·),

vec(X̂) = vec(DW ). (7)

The Kronecker product [13] is denoted by ⊗. Exploiting
a property of the Kronecker product vec(CXBT ) = (B ⊗
C)vec(X), found in equation 2 of [13], equation 7 can be
written as:

vec(X̂) = (WT ⊗ IN )vec(D) = (WT ⊗ IN )Gq. (8)

Where IN is the identity matrix of size N ×N .
Minimizing the representation error ||X− X̂||2F or equiv-

alently ||vec(X) − vec(X̂)||22 with regard to q is the least
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squares solution of X = X̂ or vec(X) = (WT ⊗ IN )Gq
which is found to be:

q = [GT (WWT ⊗ IN )G)]−1GT vec(XWT ). (9)

Equation 9 is the closed form solution of the above learning
problem. q is now a representation of the dictionary and after
some iterations becomes the signature we were looking for.
With this approach, the number of free variables has been re-
duced from NK to Q. Algorithm 1 summarizes our learning
method:

Algorithm 1: FSD learning algorithm

1 Initialize q with a Gaussian random vector;
2 Get the set of training vectors X
3 for i = 1 To MaxIter do
4 vec(Di) = Gqi
5 % Sparse coding step:
6 Find W using Di and X
7 % Dictionary updating step:
8 A =WWT

B = XWT

9 qi = [GT (A⊗ IN )G)]−1GT vec(B)

10 end

2.2. Deriving the mini-batch version

As seen in algorithm 1, FSD and MOD have similar dictio-
nary updating stages as they both alternated between sparse
approximation and dictionary update stages. It is also pos-
sible to extend FSD to mini-batch version, mFSD, similar to
how MOD can be extended to the mini-batch variant of RLS-
DLA [8]. Doing so would make FSD capable of processing
large amounts of data and also suitable for online learning.

In order to do so, we change A and B from algorithm 1 to

Ai = λAi−1 +WiW
T
i , A0 = IK (10)

Bi = λBi−1 +XiW
T
i , B0 = D0 (11)

where λ is a forgetting factor, Xi is the training set number i
and Wi is its corresponding sparse coefficient matrix.

Algorithm 2 shows the learning process for mFSD.

3. EXPERIMENTS

In this section we first show examples of signatures learned
with FSD, mFSD and ISD from some synthetic signals nor-
malized to have maximum absolute value of 1. Then we look
into how these signatures reconstruct different classes of sig-
nals.

Algorithm 2: mFSD learning algorithm

1 Initialize q with a Gaussian random vector;
2 A0 = IK
3 vec(D0) = Gq0
4 B0 = D0

5 for l = 1 To MaxIter do
6 for i = 1 To MinibatchNo do
7 Get the new mini-batch of training vector Xi

8 % Sparse coding step:
9 Find Wi using Di−1 and Xi

10 % Dictionary updating step:
11 Ai = λAi−1 +WiW

T
i

Bi = λBi−1 +XiW
T
i

12 qi = [GT (Ai ⊗ IN )G)]−1GT vec(Bi)
13 vec(Di) = Gqi
14 end
15 end

In all experiments a limit on the number of nonzero coef-
ficients is enforced in the sparse coding step. We have imple-
mented the ISD as described in chapter 12 of [1]. All dictio-
nary learning implementations are performed in MATLAB by
the authors. Sparse coding is done using orthogonal matching
pursuit from the SPAMS software package [7].

The training vectors for each signal class are chosen
by randomly extracting blocks from an example signal and
adding Gaussian noise with variance 0.2. Finally these noisy
blocks are concatenated to form the training matrix X . The
elements of initial signatures are always chosen as random
values form a Gaussian distribution with zero mean and unit
variance. A shift invariant structure is used so we can com-
pare FSD to ISD, and to visually evaluate the performance
of the signature. However the FSD could also utilize other
structures.

First, we show the trained signatures from FSD, mFSD
and ISD for different signal classes and as can be seen from
figures 1 to 3, all the methods capture the essence of their
signal class which is what we hoped for. The shift invariant
structure that was enforced as the structure of the dictionary
is visible.

Then, the reconstruction capability of the signatures are
tested on the same signal class as their training signals and
also on other signals classes. In figures 4 and 5, reconstruc-
tions done by using sparse representation of noisy signals and
dictionaries learned using FSD and mFSD are shown. In these
experiments the signals are represented very sparsely by two
different dictionaries, one trained for the same signal class,
and one trained for a different signal class.

It can be seen that the signatures are able to reconstruct
their own class of signal in a proper manner. For other signal
classes, the reconstruction is poor. In fact this poor recon-
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Fig. 1: Signatures learned for sin(t). Top two rows are the underly-
ing signal and a noisy training vector. The three bottom rows are the
signatures learned using mFSD, ISD and FSD.

0 20 40 60 80 100
−0.5

0

0.5
Original signal

0 20 40 60 80 100
−1

0

1
Noisy signal

0 20 40 60 80 100
−5

0

5
ISD

0 20 40 60 80 100
−0.1

0

0.1
FSD

0 20 40 60 80 100
−0.5

0

0.5
mFSD

Fig. 2: Signatures learned for t sin(t). Top two rows are the under-
lying signal and a noisy training vector. The three bottom rows are
the signatures learned using mFSD, ISD and FSD.

struction looks a lot like the signal of which the signature was
trained on, which indicates that signatures produced by FSD
and mFSD are capable of capturing the essence of the training
signal, a reason for considering them for signal classification.
Note that the representation was forced to be very sparse.
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Fig. 3: Signatures learned for sawtooth signal. Top two rows are the
underlying signal and a noisy training vector. The three bottom rows
are the signatures learned using mFSD, ISD and FSD.
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Fig. 4: Signal reconstruction using sawtooth and t sin(t) signatures
from mFSD. It can be seen that each signature reconstructs its own
signal very well while performs poorly on the other class

4. CONCLUSION AND FUTURE WORK

In this paper, a flexible signature dictionary was proposed.
The resulting signature captures the essence of the signal.
It has less free variables than the dictionaries resulting from
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Fig. 5: Signal reconstruction using square and sin(t) signatures from
FSD. It can be seen that each signature reconstructs its own signal
very well while performs poorly on the other class

methods such as MOD and RLS-DLA. It also imposes a spe-
cific structure, for example a shift invariant property.Note that
other classes of structures can also be enforced. The learning
algorithm of the FSD has a compact algebraic formulation
and the learning was easily extended to a mini-batch variant,
mFSD.

By looking at the outcome of reconstruction of signals
of different classes using the signatures, we showed that sig-
nal classification seems to be a possible future application for
these methods. In future work we will experiment using the
FSD on real world signals, and with different structures.
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