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ABSTRACT

In this paper, a new subspace method based on spatio-
temporal structure of data is presented for estimation of
directions-of-arrival (DOAs) of sources impinging on an ar-
ray of sensors. Firstly, the signals received on the different
sensors are processed independently sensor by sensor to esti-
mate the Times Of Arrival (TOAs) of multipaths. Then, the
obtained TOAs are post-processed to estimate the DOA of
each ray path. Simulation results show that the performance
of the proposed method is similar to those of HR methods,
with an advantage in its ability to cope with the situation
where the number of multipaths is much larger than that of
antenna sensors, which arises in many practical situations.

Index Terms— Localization, High Resolution, Time of
arrival, ray path association

1. INTRODUCTION

Array processing methods are interested for a long time to the
study of spatio-temporal signals, sampled in time and space
by a network of sensors. This allows to obtain information on
both the emitting sources, as their range to the antenna or the
signal DOA, and the medium properties, through the study of
TOA of the signals on the sensors. The performances of these
methods degrade severely with the high correlated multipath
signals encountered in target low angle tracking as it is the
case in many applications such as geophysics, communica-
tions, underwater acoustics...

In such a case, it becomes difficult to separate and extract
efficiently the parameters of each ray path. The first experi-
ments conducted in [1]: a point to point configuration, failed
in correctly separating too close ray paths. Consequently,
beamforming has been applied to a point to array configu-
ration and adding the DOA as a discrimination parameter.
More recently, double-beamforming method has been pro-
posed in a array to array configuration [2–4]. To overcome
the low resolution ability of the beamforming, a high resolu-
tion (HR) processing has also been proposed. The HR meth-
ods (or subspace-based methods), include the classical MU-
SIC or ESPRIT, use eigenvector decomposition of the cross-
spectral density matrix. They were first proposed to estimate
the DOA and arrival times, both separately and then jointly,

using a combination of the active large band MUSIC (MUSI-
CAL) with spatio-frequential smoothing processing method
[5]. All these HR methods perform well with a linear equi-
spaced array including at least one more sensor than the ra-
diating sources, a white noise spatially uncorrelated and un-
correlated sources signals; otherwise a spatial or frequential
smoothing is applied.

In this paper, we present in a synthetic way the perfor-
mances of an incoherent method based on HR processing and
frequential smoothing, in which the signal impinging on the
array is processed independently sensor by sensor. This al-
lows to overcome the constraints concerning correlated sig-
nals and number of sensors.
In the following, the superscripts T, ?, and H stand for trans-
pose, conjugate, and transpose conjugate. |.| stands for the
modulus and ‖.‖ for the Euclidean norm.

2. SIGNAL MODEL

Let us consider a wave field composed of P ray paths of a
known, large band signal s impinging on an linear array of N
sensors. The temporal signal received on the nth sensor xn is
modeled as:

xn(t) =
P∑
p=1

cp,ns(t− τp,n) + nn(t) (1)

where: s(t) is the transmitted signal, cp,n is the complex
amplitude of the pth ray path on the nth sensor, nn(t) is an
additive noise.
τp,n, the TOA of the pth ray path on the nth sensor, can be
expressed as:

τp,n = Tp + tn(θp) (2)

where Tp represent the TOA of the pth ray path on the first
sensor and tn(θp) is the delay between the first sensor and the
nth sensor. tn(θp) is a function of θp which is the DOA of the
ray path and is usually express in far field assumption as:

tn(θp) =
(n− 1)d

v
sin(θp) (3)
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with d the distance between to consecutive sensor and v
the celerity of the considered wave.
In the frequency domain, (1) can be expressed as:

x̂n(f) =

P∑
p=1

cp,nŝ(f) e−2iπfτp,n +n̂n(f) (4)

3. HIGH RESOLUTION METHODS FOR TOA
ESTIMATION

Most of the HR methods [20,21], initially developed for DOA
of narrowband signal estimation, are based on a N × N co-
variance matrix of received signal on an antenna by assum-
ing that the signal is a mixture of P plane waves with DOA
θ1, · · · , θP and a white Gaussian noise of power σ.
One can use most of these methods for TOA, τ1, · · · , τP , es-
timation, by changing the spatial dimension into a frequential
dimension for a mixture of P echoes of a known wide-band
signal (M frequencies) impinging on a sensor. This is why,
inspired by this method, we propose in this paper a new way
to characterize fully correlated sources in presence of spa-
tially correlated noise [22], without constraint on the number
of sensors. Considering the vector yn obtained by concate-
nating the signal received on the nth sensor at the different
frequencies:

yn = [
x̂n(f1)

ŝ(f1)
, ...,

x̂n(fM )

ŝ(fM )
]T (5)

The covariance matrix is given by:

Γn = E[ynyHn ] = ACAH + σ′IM (6)

where for a given sensor receiving P echoes: C is a P × P
source covariance matrix and A is aM×P matrix of steering
vectors:

A = [a(τ1), · · · ,a(τP )] (7)

with a(τ) = [e−if1ω(τ), · · · , e−ifMω(τ)]T and ω(τ) = 2πτ .
σ′ is defined by σ′ = σ

|ŝ(f)|2
Let λ1 ≥ λ2 ≥ · · · ≥ λP be the P largest eigenvalues of Γn,
with the corresponding set of eigenvectors V = [v1, · · · ,vP ]
and Π = IM − VVH a projector onto the orthogonal sub-
space.
MUSIC : MUltipe SIgnal Classification [6] is the standard or-
thogonal subspace method that can exploit some estimate Π̃
of the orthogonal subspace projector Π so that the TOA pa-
rameters are given by solving the maximization problem in τ
using a pseudo-spectrum function:

φ(τ) =
1

a(τ)HΠ̃a(τ)
(8)

In order to evaluate the accuracy of this TOA estimation
algorithm, one can express using some straight-forward cal-

culations [7, 8] the unified TOA estimation errors :

∆τp =
<(αHp ∆Γnβp)

γp
(9)

where ∆Γn = Γ̃n − Γn, αp = C−1a(τp), βp = Πȧ(τp)
and γp = ω1(τp)ȧ

H(τp)Πȧ(τp) with:
ȧ(τ) = [−f1 e−if1ω(τ), · · · ,−fM e−ifMω(τ)]T the first order
derivative of a, and ω1(τ) = 2πf dv cos(τ).
Note that all the HR methods are based on the assumption that
the matrix of the sources signal or equivalently the matrix C
is full rank. However, when the sources are correlated, which
is the case most of the time, the source covariance matrix C
is not full rank and, as a consequence, so isn’t the covariance
matrix ACAH . To face this issue, many methods have been
developed over the years to artificially increase the rank of C
(Rank (C) = P ). Most of them exploit the information on
sub-arrays or/and sub-bands [9–17] to estimate a smoothed
covariance matrix.

4. INCOHERENT SENSOR BY SENSOR
PROCESSING : ISSP METHOD

In this section we describe the different steps of our origi-
nal method, processing the signal sensor by sensor, using its
spectral diversity instead of the spatial one. We suggest in this
case how to evaluate the performances concerning the TOA
and DOA estimation.

4.1. Ray path separation step

One can use high resolution algorithm for TOA estima-
tion [18], to separate the ray paths on each sensor n and
estimate the intermediate TOA τ̃ given in (2). The ob-
servation can be pre-processed by a frequential smoothing
method [19] to ensure full rank of the covariance matrix
while keeping an appropriate time resolution. Let the M
frequencies band [f1, · · · , fM ] where fm = f1 + (m− 1)∆f
for all m ∈ [1, · · · ,M ] be divided into Kh overlapping sub-
bands of L frequencies, with a inter-frequency distance of
h∆f so that the kth sub-band is made of the {fk+hl}L−1

l=0

frequencies, yielding the relation between M , L, h and Kh:

M − h(L− 1) = Kh (10)

A modified covariance matrix Γn is estimated by the L × L
matrix:

Γ̄n =
1

Kh

Kh∑
k=1

Γnk + JΓn
?
kJ (11)

where Γnk is the covariance matrix of the modified obser-
vations yn in the kth sub-band and J is the exchange ma-
trix, whose elements are define such that: J(i, j) = 1 if
j = l − i + 1 and J(i, j) = 0 if j 6= l − i + 1, l = 1, ..., L.
This persymmetric approach has been shown to be give better
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performances than redundancy averaging for most subspace-
based techniques [8]

However, for all n ∈ [1, · · · , N ], the {τ̃p,n}Pp=1 es-
timated, correspond to an unknown permutation of the
{τp,n}Pp=1, that is, for each sensor n ∈ [1, · · · , N ] it ex-
ists a permutation σn so that, for all p ∈ [1, · · · , P ]:

τ̃p,n = τσn(p),n + ∆(τσn(p),n) (12)

were ∆(τp,n) is an estimation error, which unified expression
has been given in (9).

4.2. Ray path association and characterization steps

In order to estimate the TOA and the DOA of each ray path,
one must know the permutation σn that link {τ̃p,n}Pp=1 and
{τp,n}Pp=1 for each n = 1, · · · , N . By considering (2) and
(3), one can see that:

∀n ∈ [1, · · · , N − 1]

{
τp,n+1 − τp,n = d

v sin(θp) = αp
τp,1 = Tp

(13)
To associate each TOA with a given source, we propose al-
gorithm 1, based on (13): if we consider a given set of es-
timated TOA {τ̃kn,n}Nn=1, {kn}Nn=1 ∈ [1, · · · , N ]P for each
n = 1, · · · , N − 1 we can compute the value:

vn(kn+1, kn) =τ̃kn+1,n+1 − τ̃kn,n (14)
=τσn+1(kn+1),n+1) − τσn(kn),n)

+ ∆(τσn+1(kn+1),n+1)−∆(τσn(kn),n))︸ ︷︷ ︸
∆n(kn+1,kn)

(15)

If σn(kn) = σn+1(kn+1) = p, we have:

vn(kn+1, kn) = αp + ∆n(kn+1, kn) (16)

Equation (14) will be used to compute the mean square error:

v̄(k1, · · · , kN ) =
1

N − 2

N−1∑
n=1

vn(kn+1, kn)2

− N − 1

N − 2

(
N−1∑
n=1

vn(kn+1, kn)

)2

(17)

The P first {kn,p}Nn=1 combinations, p ∈ [1, · · · , P ], that
minimize v̄(k1,p, · · · , kN,p) are selected so that for all n ∈
[1, · · · , N ] and for all p ∈ [1, · · · , P ], we estimate σn as
σ̃n(kn,p) = p.

This criterion suppose to compute v̄(k1, · · · , kN ) for all
the {kn}Nn=1 combinations which could be unwise in terms of
computational cost. Therefore, we propose to select the most
appropriate one, according to this criterion:

∀{k1, k2} ∈ [1, · · · , P ]2 and ∀n ∈ [3, · · · ,N],

kn = argmin
k

(|vn−1(k, kn − 1)− v1(k2, k1)|) (18)

This way, the number of combinations to be tested is limited
to P 2.

Then, one can use the sorted {{τ̄p,n}Pp=1}Nn=1 by algo-
rithm 1 to estimate {Tp}Pp=1 and {θp}Pp=1 using algorithm 2.

Algorithm 1 Sort τ̃p,n by supposed source

Require: N , P , {{τ̃p,n}Pp=1}Nn=1

1: for p = 1 to P do
2: τ̄p,1 ← τ̃p,1
3: for p1 = 1 to P do
4: vp1,1 ← τ̃p1,2 − τ̃p,1
5: σp1,1 ← p1

6: for n = 2 to N − 1 do
7: Find k ∈ [1, · · ·P ] so that

∣∣∣ τ̃k,n+1−τ̃p,1
n − Vp1,1

∣∣∣
is minimum.

8: vp1,n ← τ̃k,n+1 − τ̃σp1,n−1,n

9: σp1,n ← k
10: end for
11: end for
12: Find p2 ∈ [1, · · ·P ] so that v̄ = 1

N−2

∑N−1
n=1 v

2
p2,n −

N−1
N−2

(∑N−1
n=1 vp2,n

)2

is minimum.
13: for n = 1 to N − 1 do
14: τ̄p,n+1 ← τ̃σp2,n,n

15: end for
16: end for
17: return {{τ̄p,n}Pp=1}Nn=1

Algorithm 2 Straightforward TOA-DOA estimation
Require: d, v, N , P , {{τ̄p,n}Pp=1}Nn=1

1: for p = 1 to P do
2: T̃p ← τ̄p,1
3: α̃p ← 1

N−1

∑N−1
n=1 (τ̄p,n+1 − τ̄p,n)

4: θ̃p ← arcsin( vd α̃p)
5: end for
6: return {T̃p}Pp=1 and {θ̃p}Pp=1

To evaluate the performances of the process, using the
unified performance expression (9) and algorithm 2, for all
p ∈ [1, · · · , P ], we have

∆θp =
v
d∆αp

1− ( vdαp)
2

=
v
d∆αp

1− sin2(θp)
(19)

∆Tp = ∆τp,1 , ∆αp =
∆τp,N −∆τp,1

N − 1
(20)

The proposed method is summarized in fig. 1. In the first
step (in red), a frequential smoothing pre-processing ensure
the full rank of the covariance matrix, then in a second step
(in blue) HR algorithm for TOA estimation is used to sepa-
rate the ray paths on each sensor. Each TOA must then be
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associated to a given source (step 3 in purple), and finally in
the 4th step (green one on the Figure 1), straightforward al-
gorithm is proposed to jointly estimate DOA and TOA, with
error estimation respectively given by (19) and (20).

Sensor 1 2 3

observations

f1

f2

fM−1

fM

frequential covariance

Γ(1) Γ(2) Γ(3)

NAntenna

Γ(N − 1) Γ(N)
Time of arrival

estimation using HR
methods

τ1,1

τ1,2

τ1,3

τ1,P

τ2,1

τ2,2

τ2,3

τ2,P

τ3,1

τ3,2

τ3,3

τ3,P

τN−1,1

τN−1,2

τN−1,3

τN−1,P

τN,1

τN,2

τN,3

τN,P

fL

N-1

Modified Spatial
Smoothing Processing

K sub-bands
of L frequencies

averaging over
the sub-bands

step 1

step 2

association
step 3

TOA - DOA
estimation

step 4

Fig. 1. Incoherent Sensor by Sensor Processing

5. PERFORMANCES STUDY ON SIMULATED DATA

In this section, we propose to evaluate the performances of
ISSP method, considering that the signals impinging on the
array is the mixture of P = 2 echoes of a same known wide-
band signal, that is, assuming matrix C = IP . These two
plane waves are respectively set with DOA 8◦ and 9.3◦ and
with TOA 0.5× 10−3s and 2.5× 10−3s. The velocity of the
wave is set to v = 1466m/s and the lower frequency of the
band is set to f1 = 150kHz and the inter-frequency distance
∆f = 75Hz. We realized 500 simulations, for which 500
snapshots are computed. We defined the signal-to-noise ratio
(SNR) as SNRdB = 10 log10

(
σsignal

σnoise

)
, where σsignal (resp.

σnoise) is the power of the signal (noise) fixed to 10dB.
For ISSP method, we first have to choice the number of

frequency M , which will impact on the estimation of all the
intermediate estimates TOA. In theory, to successfully sepa-
rate the 2 echoes, we should have M ≥ P + 1 = 3. Figure 2
shows the average RMSE [23] of the two closed echoes TOA
versus the number of frequency M . One can see that as soon
as M ≥ 6, the TOA RMSE is minimal (lower than 10−6s).
So in the following, we will use M = 6.

For the chosen experimental set, d = v
2f1

(necessary in
classical HR method to fulfill Nyquist Shannon sampling the-
orem) Figure 3 shows for ISSP method the TOA RMSE ver-
sus N with d = v

2f1
, and for a fixed width antenna of 0.07m

and d = 0.07
N−1 . The TOA is always well-estimated with an

error smaller than 3× 10−6s. Figure 4 shows that for a fixed

Fig. 2. TOA RMSE versus M

width antenna, the DOA RMSE is smaller than for a fixed d
antenna. When N ≥ 15 the ISSP method with both antennas
estimates the DOA with an error smaller than 0.1◦. One can
also remark from Figure 4 that in the same conditions with
MUSIC to separate the 2 echoes, we need to ensure at least
N ≥ 14 and N ≥ 17 to obtain error around 0.1◦.

Fig. 3. TOA RMSE versusN , obtained by ISSP with d = v
2f1

and d = 0.07
N−1

Fig. 4. DOA RMSE versusN , obtained by ISSP with d = v
2f1

and d = 0.07
N−1 , and by MUSIC

It also important to notice that for the ISSP method, as the
treatment is done independently sensor by sensor, the noise
is spectrally white; consequently, the noise covariance matrix
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is diagonal so this method shall not be impacted by the noise
spatial correlation.

6. CONCLUSION

This paper has proposed a method that does not depend on
the array geometry, which is not constrained by the number
of sources to be localized, and which is influenced neither by
the correlation of the sources or by the spatially noise corre-
lation. This method shows very good separation performance
and usabilily. Its capabilities will be evaluated more accu-
rately by a statistical study of its performances and tests on
real data in a forthcoming work.
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