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ABSTRACT

Linear prediction is a popular strategy employed in the anal-
ysis and representation of signals. In this paper, we propose
a new linear prediction approach by considering the standard
linear prediction in the context of graph signal processing,
which has gained significant attention recently. We view the
signal to be defined on the nodes of a graph with an adjacency
matrix constructed using the coefficients of the standard linear
predictor (SLP). We prove theoretically that the graph based
linear prediction approach results in an equal or better per-
formance compared with the SLP in terms of the prediction
gain. We illustrate the proposed concepts by application to
real speech signals.

Index Terms— Linear prediction, Graph signal process-
ing, autoregressive model.

1. INTRODUCTION

Many naturally occurring and synthetic-made signals exhibit
a high degree of correlation over consecutive samples. For
simplicity and compactness of representation, it is a typical
practice to model such a signal as an outcome of an autore-
gressive (AR) process. A signal 2 generated by a L order
AR model is expressed as:

L
x(n):Zaix(n—i)—Fe(n), n=12--- N (1)

i=1

where x(n) denotes the signal sample at the nt" instant, a;,
the it AR coefficient, and e(n), the additive white noise. For
brevity and ease of description, we use the terms ’instant’
or ’time’ to refer to the independent variable in this paper,
though the analysis does not assume time-series data. The
linear estimate or linear predictor (LP) of x(n) from its past
P samples is given by [1]

P
#(n) =Y aw(n—i), n=12-- N 2)
1=1
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where a;s denote the predictor coefficients obtained by
minimization of the squared prediction error {(x,a) =
>, (2(n) = #(n)% x = [2(1),2(2),--- ,z(N)]" € RY,
and x” denotes the transpose of x. Approaches that incorpo-
rate statistics of the data explicitly often involve minimization
of the expected value of £ [2, 3]. We shall, however, consider
the more general data-driven version of the LP obtained by
minimization of ¢ directly over the parameter vector a and
signal x.

Linear prediction finds applications in a wide range of
domains such as geophysics, speech coding, image coding,
and neurophysics, among others. We refer to the article by
Makhoul [1] for an exhaustive review of the techniques and
applications of linear prediction. Linear prediction with time-
varying predictor coefficients have also been proposed for
analysis of nonstationary signals [4, 5, 6]. LP models that
incorporate dimensionality and sparsity constraints have also
been considered [7, 8]. Recently, Sandryhaila and Moura in-
troduced the notion of linear prediction for signals defined
over connected graphs and demonstrated its application in the
analysis of sensor network data [9]. Motivated by this idea,
we propose a specific graph LP approach for analysis of stan-
dard AR signals (signals represented as in (1)) using a graph
adjacency matrix constructed from the coefficients obtained
from the standard linear predictor. We prove theoretically that
the proposed graph linear predictor results in smaller predic-
tion error than the standard predictor. We validate the theory
by application of the proposed approach to speech signals.

1.1. Related work

Signal processing on graphs has gained considerable inter-
est from the research community recently. The framework
deals with the analysis of signals defined over the nodes of
a connected graph, with particular focus on defining and ex-
tending many of the foundational discrete signal processing
concepts such as shift-invariant filtering, convolution, Fourier
transform, modulation analysis, wavelet transforms, to non-
Euclidean geometries [10, 11, 12, 13, 14]. Such an analysis
seems particularly well-suited to the present scenario where
the applications involving large connected datasets is on the
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increase.

The techniques for signal processing on graphs may be
grouped under two different approaches. The first approach
is based on the graph Laplacian, whose spectrum forms the
building block for the definition of spectral operations such
as the Fourier transform and in modulation analysis. Shuman
et al. present a detailed review of this approach in [15]. The
second approach takes the graph adjacency matrix as its foun-
dational unit, using it to define operations such as graph shift,
graph Fourier transform, frequency ordering, and is based on
the concepts of algebraic signal processing [16]. Sandryhaila
and Moura discuss this approach in great depth in their recent
article [17]. We follow the second approach as advocated in
[9, 17].

2. PRELIMINARIES

2.1. Graph signal processing

We briefly review some of the basic building blocks of signal
processing on graphs. We denote the graph by G = (V, A),
where V and A € RV denote the vertices/nodes and the
weighted adjacency matrix, respectively. The i*" graph-shift
of a graph signal x € RY is defined as [9, 17]:

5(1' = A'x.

The Q" order graph linear predictor of x, denoted by X, is
defined as linear combination of () graph-shifts of x, that is,

where B = [biby---bg], bi = % = Alx and h =
[h1,ha, -+ ,hg]T € RN. The optimal predictor coeffi-
cients are obtained by minimizing squared error {,(x,h) =
|lx — %x||3 = ||x — B hJ|2. The solution is obtained as

h, = argmin¢,(x,h)=argmin|x— Bh|3
h h

= Bfx= (BTB)_lBTx. 3)

Typically, 2 is much smaller than N.

2.2. Standard linear prediction
The squared error for the standard LP is given by
£(x,a) = ||x — x]3,

where &, obtained using (2). Let us define the matrix X €

RNVXP as follows:
0 0 0 0
(1) 0 0 0
X — x(2) x(1) 0 0
#(N—=1) «(N—3) z(N—3) #(N — P)
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Then, the prediction X can be written as X = Xa, where

a=[ay,as, -+ ,ap]’, or equivalently,
2
£(x,a) =[x — Xalf;,
and the optimal predictor coefficients are obtained as:

a, = argmin ||x — X a||? = XTx = (XTX)"'XTx 4)
a

Let us denote the optimal predictor by x, = X a,. The cor-
responding minimum squared error is given by £(X., a,). In
general, e = x — x, # 0 and £(x.,a,) > 0. In order that
the system is identifiable and stable we make the following
assumption:

Assumption 1. z; # 0 and a1, # 0.

3. GRAPH LINEAR PREDICTION

Let us now consider x as a signal over a given graph G =
(V, A). By applying (3) on x, we get that the optimal GLP
coefficients are given by:

h, = argmin|x — Bh|3 = Bx, ®)
h

and the minimum squared error is given by £,(xg+, h,). The

optimal graph prediction is given by x,. = B h,. In general

it is reasonable to assume that e, = x — x4, # O, that is,

the predicted values do not exactly coincide with the original

signal.

Goal: To design an adjacency matrix A such that £4(X g, h..)

§(xx, an).

Consider the following adjacency matrix constructed us-
ing the optimal P*" order SLP coefficient vector a,:

0 0 0 0 0

a1y 0 0 0 0

A2+ a1 0 0 0

: 0

A= apsx ap—ix a1 0 0 ©)

0 Apy e 0 0

: 0

| O aps Ap_1ix aix 0 |

We note that x, = Xa, = A.x, and that by construction,
the maximum rank of A, is N — 1 and hence, x ¢ span(A.)
(x being an arbitrary [N-dimensional vector). We also note
that for the adjacency matrix A, the corresponding B matrix
has columns given by by, = Afx forl <k <@,and b; =
A.x = Xx,.

Lemma 1. For the adjacency matrix A, constructed as in
(6), B has full column rank.

IN
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Proof. Let us denote by, = [by k, b2, ..., by k)T . Then, we
have by = A,x = [0,b21,...,by1] and by = A2x =
A.b; = [0,0, bsa..., bN,g]T. In general, we have that the
first k£ elements of by, are equal to zero, and therefore, B is
expressible as follows:

0 0 0 ... 0 0 T
bgﬁl 0 0 ... 0 0
b3 bz O 0 0
B = boor 0 |+ D
bQ,l bQ+1,Q
L bN,l bN,2 bN,Q a

where bs 1 = aj.x1, b3o = a%*xl, and finally bg11,0 =
a?*xl. Using Assumption 1, we have that by ; # 0, b3 2 # 0,
leading to bg11,0 # 0, which in turn shows that B has full

column rank. O

We next show that the error from the GLP of x using A,
and h, is always bounded from above by the error from the
SLP, which is formally stated in the following theorem.

Theorem 1. For the adjacency matrix A, we have

gg(xg*a h*) < f(x*, a*)a
that is, GLP error energy is smaller than that of SLP.

Proof. B = [b1,bs,...,bg] = [x«,b2,...,bg]. As B has
full column rank, by the least squares principle we have that
€4(xge 1) = [[x— Bhu[[? = [[x — [x, b, ..., bolh. 2 <
x — x. |2 = £(x..a.). =

The inclusion of () graph filter taps gives additional de-
grees of freedom in the minimization of &, using same in-
formation as in the SLP, namely, the signal x. Thus, the
GLP may be viewed as an approximation to a higher order
SLP, particularly for order since the first filter tap has already
been optimized using the SLP). In this formulation, we im-
plicitly assume that the underlying AR order L is typically
much larger than P and Q).

4. EXPERIMENTS

We apply the proposed GLP to speech samples taken from the
CMU Arctic database [18] for different values of P and ().
We compare the performance with SLP of order P, with GLP
of varying graph orders (). The sampling rate of the speech
samples is 16 kHz. We use 10ms window frames for analy-
sis. For each frame, we compute the prediction gain defined

as 1010g(PP” )

. ]
T —T

where P, = ||x|2 and P,_; = ||x — ®|2.
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Fig. 1. Average prediction gain for different graph orders (a)
P =3,and (b) P = 8.

In Figure 1, we show the prediction gain as a function of the
graph order @, for P = 3 and P = 8, corresponding to a
male speech sample. The gain is obtained by averaging over
all the signal frames. We observe that the GLP performs con-
sistently better than the P order SLP as expected. We also
observe that the increase in prediction gain from the GLP re-
duces from P = 3 to P = 8. This is so because the coeffi-
cients of higher order SLP capture most of the signal informa-
tion and performance is not expected to improve greatly with
additional degrees of freedom obtained from the GLP.

In Figures 2 and 3, we show the predictor gains for differ-
ent frames of the signal considered in Figure 1, for particular
values of P and ). We also show the zoomed-in plots around
a frame range where the performance difference can be seen
easily. As before, the increase in prediction gain reduces as
we go from P = 3 to P = 8. Similar performance curves are
obtained for a large number of speech samples, for both male
and female speakers. We show here a particular example to
illustrate the general trend. As we have discussed in the ear-
lier sections, our approach is valid for general AR models and
the choice of examples from speech data is for the purposes
of illustration only.

5. CONCLUSIONS

We proposed a graph linear predictor for the analysis of sig-
nals generated from AR models. The analysis was carried out
using a graph adjacency matrix constructed from the coef-
ficients of standard linear predictor. We proved theoretically
that the proposed approach results in an equal or better perfor-



23rd European Signal Processing Conference (EUSIPCO)

40 :

& |[——trcP

S 30l| — GLPC ]‘

£ A 1 l

[

o 20t N ﬁ“q b | Ml I "
25l 1 ﬁv‘”‘w‘h‘va'w\”\f\ MJ\[‘,“M”M W
gL ”i‘hw [ \ b UL i
> 1 /
<9 Y ‘.‘ | |

a v -

% 50 100 150 200

Frame number

()

w
o

N
(&

-
(&

prediction gain (dB)
N
o

Average

?35 136 137 138 139 140 141 142 143 144
Frame number

(b)

Fig. 2. Prediction gain for P = 3 and () = 3 (a) Complete
signal, and (b) Zoomed-in plot of (a).
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Fig. 3. Prediction gain for P = 8 and ) = 3 (a) Complete
signal, and (b) Zoomed-in plot of (a).

mance in comparison with the standard linear predictor, while
using the same prediction coefficients. The graph predictor so
obtained may be viewed as approximating the performance
of higher order standard linear predictor. Experiments were
performed on speech data to demonstrate the validity of the
proposed theory.

The proposed approach is a specific case of graph linear
prediction for AR models. The choice of the graph order and
the prediction order both decide the performance of the graph
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predictor. A large () results in better fit, at the cost of fitting
the noise as well. Further analysis is necessary in order to
ascertain the nature of the trade-off between P and @ in the
prediction performance. It would also be interesting to inves-
tigate if similar philosophy could be applied to more general
signal models. We intend to explore along these lines in the
near future.
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