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ABSTRACT

In this paper, we develop adaptive linear prediction filters in

the framework of maximum a posteriori (MAP) estimation. It

is shown how priors can be used to regularize the solution and

references to known algorithms are made. The adaptive filters

are suitable for implementation in real-time and by simulation

with an adaptive line enhancer (ALE), it is shown how the

parameters of the estimation problem affect the convergence

of the adaptive filter. The adaptive line enhancer (ALE) is a

widely used adaptive filter to separate periodic signals from

additive background noise where it has traditionally been im-

plemented using the least-mean-square (LMS) or recursive-

least-square (RLS) filter. The derived algorithms can gener-

ally be used in any adaptive filter application with a desired

target signal.

Index Terms— Maximum a posteriori; adaptive filters;

linear prediction; regularization; adaptive line enhancer.

1. INTRODUCTION

In this paper, the problem of finding the optimal linear pre-

diction coefficients in an adaptive filter of N −1 order is con-

sidered in the context of maximum a posteriori (MAP) esti-

mation. The adaptive filters are recursively estimated over a

frame of M samples and are derived for both the overdeter-

mined (M > N ) and underdetermined (M < N ) case where

priors are used to regularize the solution. The proposed al-

gorithms can more generally be applied to any adaptive filter

and MAP adaptive filters were also considered in [1], where

a uniform prior was assumed and only the case M = 1 was

considered. Optimally regularized adaptive filters has been

widely studied, see e.g. [2] and the references therein. The

main novelty of the proposed algorithms w.r.t. those reported

in [2] is the use of two regularization terms. Throughout the

paper, references will be made to well-known adaptive filter

algorithms.

The proposed algorithms are applied in an adaptive line

enhancer (ALE) [3]. The ALE is a type of adaptive filter used

to separate a periodic signal y(n) from additive background

noise e(n) and has found applications in a range of different

fields. The adaptive filter predicts the y(n) component in the

observed signal x(n) = y(n)+e(n) over a prediction horizon

of K samples, leading to a system of equations given as:

xM = Xw + e (1)

where xM , [x(n), x(n − 1), ..., x(n − M + 1)]T , X ,

[xN (n−K),xN (n−K−1), ...,xN (n−K−M+1)]T , w is

the filter that will be used to predict y(n) and e , [e(n), e(x−
1), ..., e(x−M + 1)]T .

The paper is organized as follows. In section 2, the linear

prediction problem is formulated as MAP estimation in the

framework of Bayesian learning. Section 3 contains the opti-

mization of the linear prediction problem using the assump-

tion of Gaussian distributions, while section 4 describes how

the optimization can be changed to instead assume a Laplace

distribution. Section 5 contains some experimental results us-

ing the derived equations and the conclusion can be found in

section 6.

2. LINEAR PREDICTION AS MAP ESTIMATION

Following Bayesian learning [4], we will consider observa-

tions and filter coefficients to be stochastic variables and esti-

mate the current filter coefficients by maximizing the a poste-

riori probability given by Bayes rule:

p(w|X,xM ,wold) =
p(X,xM ,wold|w)p(w)

p(X,xM ,wold)
(2)

where wold is a set of old filter coefficients, p(X,xM ,wold|w)
is the likelihood, p(w) is the prior and p(X,xM ,wold) is

the evidence. In the context of adaptive filters, the old filter

coefficients are the MAP estimates from the previous sample

or frame depending on how often the MAP estimates are

updated.

Assuming that the old filter coefficients and the current

observations are independent given the new filter coefficients,

we can factorize the likelihood:

p(X,xM ,wold|w) = p(X,xM |w)p(wold|w) (3)

Also, as the normalization p(X,xM ,wold) is independent of

w, it has no significance for the maximum of the posterior:

p(w|X,xM ,wold) ∝ p(X,xM |w)p(wold|w)p(w) (4)
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Since the logarithm is a monotonically increasing function,

the MAP estimates can be found by solving the following un-

constrained minimization problem:

minimize
w

ℓ(w) (5)

where:

ℓ(w) = −log
[

p(w|X,xM ,wold)
]

∝ −log
[

p(X,xM |w)
]

− log
[

p(wold|w)
]

− log
[

p(w)
]

= ℓX,xM |w(w) + ℓwold|w(w) + ℓw(w) (6)

3. MAP USING GAUSSIAN DISTRIBUTIONS

Using (1) and assuming that e(n) has a zero-mean Gaussian

distribution, the first factor in the factorized likelihood in (4)

is given by:

L(w|X,xM ) = p(X,xM |w)

=
1

√

(2π)M |Σe|
exp−

1

2
(xM−Xw)TΣ−1

e
(xM−Xw) (7)

where Σe = E[eeT ] = diag[σe(n)
2, σe(n − 1)2, ..., σe(n −

M +1)2] is the covariance matrix of e, E[·] is the expectation

operator and | · | is the determinant, which is equal to the trace

for a diagonal matrix.

The first factor in the negative log-likelihood is:

ℓX,xM |w(w) = − logL(w|X,xM )

=
1

2
log

[

(2π)M |Σe|
]

+
1

2
(xM −Xw)TΣ−1

e (xM −Xw)

∝
1

2
(xM −Xw)TΣ−1

e (xM −Xw) (8)

Similarly, again assuming Gaussian distributions, we define

the following:

ℓwold|w(w) ∝
1

2
(w −wold)

TΣ−1
∆ (w −wold) (9)

ℓw(w) ∝
1

2
wTΣ−1

w w (10)

where Σ∆ = E[(w−wold)(w−wold)
T ] and Σw = E[wwT ]

are covariance matrices that determine how far from wold the

new filter coefficients w are expected to be and the prior ex-

pectation of w, respectively. Since ℓX,xM |w(w), ℓwold|w(w)
and ℓw(w) are quadratic functions in w and the covariance

matrices are positive semi-definite, the problem in (5) with

Gaussian distributions is an unconstrained convex quadratic

optimization problem.

A necessary and sufficient condition for the global min-

imum of an unconstrained convex quadratic optimization

problem is that the gradient is equal to zero:

∂ℓ(w)

∂w
= 0 (11)

A closed form solution to this equation will be given in the

following.

3.1. Minimization of ℓ(w) using Gaussian distributions

The solution to (11) with Gaussian distributions is given by:
(

Σ−1
w +Σ−1

∆ +XTΣ−1
e X

)

w = Σ−1
∆ wold +XTΣ−1

e xM

(12)

In the following, we consider the two cases M > N and

M < N separately, as they have different interpretations.

When M > N , Φ̃ = XTΣ−1
e X has full rank and it be-

comes meaningful to interpret Φ̃ and γ̃ = XTΣ−1
e xM as

the weighted covariance matrix and cross-covariance vector

respectively. This makes it possible to write the solution as a

function of Φ̃ and γ̃, which can then be estimated using differ-

ent assumptions, for instance using the assumption that Φ̃ is a

Toeplitz matrix as in the auto-correlation method [5]. When

M < N , Φ̃ is a singular matrix and the interpretation of a

weighted covariance matrix and cross-covariance vector be-

comes less meaningful. In this case there are also more com-

putationally efficient ways to calculate w. We assume that

Σw and Σ∆ have full rank, which is often the case in prac-

tice. If this is not the case, the inverse of the singular matrices

can be calculated as the pseudo-inverse using singular value

decomposition (SVD), which will increase the computational

complexity.

Case M > N : Isolating w in (12) and performing some

matrix manipulations gives:

w = wδ +
(

Σ−1
w + Σ−1

∆ + Φ̃
)−1(

γ̃ − Φ̃wδ

)

(13)

where wδ = Σw

(

Σw + Σ∆

)−1
wold. The equation is a re-

cursive equation that updates w to be somewhere on the line

from wδ to a solution that is regularized by both Σw and Σ∆.

wδ is a leaky version of wold where the leak depends on the

ratio between Σw and Σ∆. Note that the leak is not only on

the first wold as in the usual leaky-LMS but also inside the

error term
(

γ̃ − Φ̃wδ

)

. This form reveals that the MAP op-

timization problem with Gaussian distributions can be seen

to be a Newton-type optimization. To determine the effect of

Σw alone, we write (13) for Σ∆ → ∞I , leading to wδ = 0
and hence:

w =
(

Σ−1
w + Φ̃

)−1
γ̃ (14)

It is seen that Σ−1
w acts as a regularization, where the lower

the prior variance of w, the more the solution is regularized

towards zero.

Conversely, to determine the effect of Σ∆ alone, we write

(13) for Σw → ∞I:

w = wold +
(

Σ−1
∆ + Φ̃

)−1(
γ̃ − Φ̃wold

)

(15)

It is seen that in this form, Σ−1
∆ acts as a damping factor to the

iterative solution as in the Levenberg-Marquardt optimization

algorithm [6].

When letting both Σ∆ → ∞I and Σw → ∞I , the solu-

tion in (13) is a weighted linear least-squares (LLS) solution:

w = Φ̃−1γ̃ =
(

XTΣ−1
e X

)−1

XTΣ−1
e xM (16)
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Case M < N : Using the matrix inversion lemma in (12),

the solution can also be written as:

w = wδ +ΣδX
T (Σe +XΣδX

T )−1(xM −Xwδ) (17)

where wδ = Σw

(

Σw + Σ∆

)−1
wold and Σδ = (Σ−1

w +

Σ−1
∆ )−1. When M < N , this solution is more computation-

ally efficient than (13) and leads to a generalized type of affine

projection adaptive filter [7].

As before, to determine the effect of Σw, we write (17)

for Σ∆ → ∞I:

w = ΣwX
T (Σe +XΣwX

T )−1xM (18)

It is seen that for this case, Σe is a regularization towards zero

to the underdetermined solution and is weighted against Σw.

To determine the effect of Σ∆, we write (17) for Σw →
∞I:

w = wold +Σ∆X
T (Σe +XΣ∆X

T )−1(xM −Xwold)
(19)

which is a weighting between wold and the underdetermined

solution.

Of particular interest is the solution for M = 1:

w = wold +
Σ∆xN

σ2
e + xT

NΣ∆xN

(

x(n)− xT
Nwold

)

(20)

It is seen that this has the form of the RLS algorithm but with

a different interpretation based on the statistical properties of

w and e. The equation also shows strong similarities to the

Kalman filter [8]. The matrix Σ∆ determines how fast the fil-

ter coefficients can be adapted similar to proportionate adap-

tive filters [9]. If instead, Σ∆ , ∆2I , where ∆2 >> σ2
e so

σ2
e can be ignored, and a step-size parameter µ is introduced

to the update equation, then (20) becomes:

w = wold +
µxN

xT
NxN

(

x(n)− xT
Nwold

)

(21)

which is the normalized least-mean squares (NLMS) algo-

rithm [7]. The step-size /mu is a proportional factor to the

update step and for 0 < µ ≤ 1 the update equation takes a

step that is somewhere between wold and the solution to the

MAP estimation problem.

4. MAP USING LAPLACE DISTRIBUTIONS

In section 3, the filter coefficients were derived under the as-

sumption of Gaussian distributions. Other distributions can

be used in a similar fashion and in this section, we consider

the Laplace distribution for the error. The Laplace distribu-

tion is univariate, and although different generalizations exist

to convert it to a multivariate distribution, in the following we

consider each variable to be independent for the sake of sim-

plicity, so the Laplace distribution of a vector e can be written

as:

p(e) =
∏

i

1

2bi
exp

−
|ei−ai|

bi (22)

The Laplace distribution has heavier tails than the Gaus-

sian distribution and is therefore often used to promote more

sparse or robust estimates. Using the same procedure as in

section 3, the negative log-likelihood can be written as:

ℓe|a ∝ B−1|e− a| (23)

where B = diag[b0, ..., bM−1]. The negative log-likelihood

of the Laplace distribution is convex, except at the mini-

mum e = a where the gradient is not defined. Since it only

contains first-order information, there is no local information

about how close a variable e∗ is to the minimum and therefore

the solution to the optimization problem can not be written

in closed form. The Laplace distribution corresponds to an

L1-norm (and/or L1-regularized) estimation problem and in

the context of linear prediction, the use of an L1-norm prior

has been termed sparse linear prediction, see e.g. [10, 11].

A gradient descent algorithm could be used, coupled with a

search along the gradient direction:

w = wold − µ
∂ℓ(ŵ)

∂ŵ
|ŵ=wold

(24)

where µ is the step-size. Assuming a Laplace distribution for

ℓX,xM |w(w) would in this case give:

w = wold + µXTB−1sgn
(

xM −Xwold

)

(25)

where sgn(∗) is the sign function. For M = 1, this is the

sign-LMS algorithm [12] where the minimum of the opti-

mization problem is only reached if µ is chosen appropriately.

Assuming a Gaussian distribution for ℓwold|w(w) and a

Laplace distribution for ℓX,xM |w(w), and solving the corre-

sponding MAP optimization problem, by setting the gradient

equal to zero and using the matrix inversion lemma gives:

w = wold +Σ∆X
TB−1sgn

(

xM −Xw
)

(26)

Assuming that the filter has converged, so we can approxi-

mate w ≈ wold, and that Σ∆ = ∆I so µ = ∆ is a scalar,

then the sign-LMS follows.

5. EXPERIMENTAL RESULTS

In this section, we provide some simulations of an ALE. We

estimate the prediction coefficients from a voiced speech sam-

ple and then excite a filter with Gaussian white noise using the

estimated coefficients to generate a signal that is then used in

the ALE. First, we consider a case where the used model fits

the data and convergence to the true filter coefficients can be

measured. Secondly, we investigate a case where the filter

is undermodelled using a higher-order AR model, which is

a more realistic scenario for a speech signal. As M = 1 is

the most popular case in adaptive filters, it will be used in all

simulations in this section.

To create a test signal x(n) with known filter coefficients,

we first estimate the coefficients from a voiced speech sample
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Fig. 1. Test signal with known filter coefficients.

with a sample rate of 16kHz using (16) with N = 32 and

K = 64 and then create x(n) as:

x(n) = y(n) + e(n) = wT
truexN (n−K) + e(n) (27)

where e(n) is a white noise signal with variance σ2
e = 0.1

and wtrue are the true filter coefficients. wtrue is scaled so

the input signal-to-noise ratio SNRi = 0, where SNRi is

given by:

SNRi = 10 log

∑

n y(n)
2

∑

n e(n)
2

(28)

The impulse response of the filter that generates x(n) and the

power spectrum of the signals can be seen in Figure 1.

The adaptive filter was evaluated by initializing the co-

efficients to random values with a standard deviation of 0.1

and then measuring the energy difference between wtrue and

the coefficients of the adaptive filter for each sample. The

experiment was repeated for 100 trials with different starting

coefficients and noise e(n) for each trial and the error was

averaged over the trials. The parameters were initially set to

Σ∆ = 0.005I , σ2
e = 0.1 and Σw = 5I . A simple test was

done by changing the diagonal values and the experimental

results can be seen in Figure 2. Testing with Σ∆ revealed that

this parameter could be used to tradeoff convergence speed

with final coefficient error. This is expected as using larger

values means the filter can adapt faster, while also making

the filter having larger oscillations around the optimal coeffi-

cients. Choosing values that are relative to how far the cur-

rent coefficients are to the true values makes the filter con-

verge faster as seen for Σ∆ = diag[(wLLS−wstart)
2] where

wstart are the coefficients the filter is initialized with. Σ∆

had in this case an upper bound of 0.005. A similar pattern

is observed for σ2
e , which acts as a kind of regularization to

the MAP estimate. This can slow down the adaptation but

eventually results in a more accurate result. Completely dis-

regarding the noise, by setting σ2
e = 0 as in the NLMS, how-

ever, severely degrades the performance. Reducing all the

diagonal values in Σw reduces the performance, since some

coefficients should have large values. In the plot of coeffi-

cient error for Σw, the 3 diagonal values for the coefficients

near the fundamental pitch were fixed at 5, while the rest of

the diagonal values were reduced, which is seen to result in a
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Fig. 2. The coefficient error for the adaptive filter for different

parameters.

faster convergence. To test the NLMS algorithm, a step-size

µ was introduced and different values tested while keeping

σ2
e = 0. It is seen that reducing µ greatly improves the con-

vergence, but in all cases the start of the error curve is higher

than when the noise is taken into account by setting σ2
e = 0.1.

In a second experiment a 96th order AR filter is fitted to

the same speech sample with K = 1 and then applied to a

white noise signal. The signal is then mixed with an addi-

tional white noise signal at a SNR of 10dB. This resulting

signal is then used as input to the adaptive filter estimating

64 samples ahead with a 31st order filter, i.e. K = 64 and

N = 32. Due to the fact that the adaptive filter is under-

modelled, it can not predict the AR model perfectly and the

ideal performance of the adaptive filter is therefore less than

the 10dB SNR that the signal is mixed with. To get an up-

per bound on the performance of the adaptive filter, the LLS

solution wLLS is calculated over the entire signal using (16)

and used as comparison. The performance is measured by

calculating the energy of the true sample x(n)2 and the en-

ergy of the difference between the true and predicted sample

(x(n) − x̂(n))2, repeating the prediction for 1000 trials and

calculating the average SNR for each sample as:

SNR(n) =

∑

i xi(n)
2

∑

i(xi(n)− x̂i(n))2
(29)

where the index i corresponds to the trial number. Different

adaptive filters evaluated on this signal can be seen in Figure

3. The blue curve is the MAP adaptive filter that was used

in the previous experiment and it is seen that it has the high-

est SNR. The red curve corresponds to a RLS filter, where

Φ has been estimated from the data and has a faster con-
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Fig. 3. Training and test results for the undermodelled case.

vergence. The green curve corresponds to the NLMS filter

and µ = 0.002 was set experimentally to the highest possible

value without the filter diverging. The cyan curve is a MAP

filter with lower Σ∆, which has a slower convergence. It is

seen that all MAP filters have a higher SNR than the wLLS

filter for the training case, which indicates that they are over-

fitting the model to the data. Using the adaptive filter coeffi-

cients from this set of signal trials on a different set of signal

trials calculated with the same AR model reveals that this is

indeed the case as seen in the test case. The wLLS filter has

a similar SNR for this test case, which indicates that it has

captured the underlying model, while the MAP filters have

much lower SNR values than for the set of training signals.

The blue curve performs the worst of the MAP filters, while

the green curve performs better than the red RLS filter.

6. CONCLUSION

Adaptive filters have been derived in this paper corresponding

to maximum a posteriori estimates using Gaussian or Lapla-

cian distributions. The filters have been derived in the context

of linear prediction, but can be applied in any adaptive filter-

ing application. Two regularization terms have been included

as probability distributions on the filter coefficients. Refer-

ences to known algorithms have been made and it has been

shown how the derived filters relate to well known adaptive

filters. Using experimental simulations it has been shown how

the parameters affect the convergence.

7. ACKNOWLEDGEMENTS

The authors would like to thank Jens Brehm Nielsen at Widex

for insightful discussions and feedback concerning Bayesian

learning.

REFERENCES

[1] D. Y. Huang, S. Rahardja, and H. Huang, “Maximum a

posteriori based adaptive algorithms,” in Signals, Sys-

tems and Computers, 2007. ACSSC 2007. Conference

Record of the Forty-First Asilomar Conference on, Nov

2007, pp. 1628–1632.

[2] T. van Waterschoot, G. Rombouts, and M. Moonen,

“Optimally regularized adaptive filtering algorithms for

room acoustic signal enhancement,” Signal Processing,

vol. 88, no. 3, pp. 594–611, Mar 2008.

[3] B. Widrow, Jr. Glover, J.R., J.M. McCool, J. Kau-

nitz, C.S. Williams, R.H. Hearn, J.R. Zeidler, Jr. Eu-

gene Dong, and R.C. Goodlin, “Adaptive noise can-

celling: Principles and applications,” Proceedings of

the IEEE, vol. 63, no. 12, pp. 1692–1716, Dec 1975.

[4] Christopher M. Bishop, Pattern Recognition and Ma-

chine Learning (Information Science and Statistics),

Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006.

[5] John R Deller, John H L Hansen, and John G Proakis,

Discrete-time processing of speech signals, Institute of

Electrical and Electronics Engineers, New York, 2000,

Originally published: New York : Macmillan, 1993.

[6] J. Nocedal and S. J. Wright, Numerical optimization,

Springer series in operations research and financial en-

gineering. Springer, New York, NY, 2. ed. edition, 2006.

[7] S. Haykin, Adaptive Filter Theory, Prentice-Hall infor-

mation and system sciences series. Prentice Hall, 2002.

[8] S. M. Kay, Fundamentals of Statistical Signal Process-

ing: Estimation Theory, Prentice-Hall, Upper Saddle

River, NJ, 1993.

[9] Zhe Chen, Steven L Gay, and Simon Haykin, “Pro-

portionate adaptation: New paradigms in adaptive fil-

ters,” Least-Mean-Square Adaptive Filters, pp. 293–

334, 2003.

[10] D. Giacobello, M.G. Christensen, M.N. Murthi, S.H.

Jensen, and M. Moonen, “Sparse linear prediction and

its applications to speech processing,” Audio, Speech,

and Language Processing, IEEE Transactions on, vol.

20, no. 5, pp. 1644–1657, July 2012.

[11] T. L. Jensen, D. Giacobello, T. van Waterschoot, and

M. G. Christensen, “Fast algorithms for high-order

sparse linear prediction with applications to speech pro-

cessing,” Speech Communication, submitted for publi-

cation, Jan 2015.

[12] Ali H. Sayed, Fundamentals of Adaptive Filtering,

Wiley-IEEE Press, 1 edition, June 2003.

23rd European Signal Processing Conference (EUSIPCO)

2760


