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ABSTRACT

In this article, a new kernel estimation method is introduced
using the epigraph set of the /;-norm. The new method pro-
duces a high-resolution and cross-term free estimates for Co-
hen’s Class of Time-frequency (TF) distributions. The kernel
estimation process starts with an initial rough TF distribution.
This initial estimate is orthogonally projected onto the epi-
graph set of the /; norm in TF domain. Epigraph set of the
Iy norm produces a sparse time-frequency distribution. Spar-
sity in TF domain leads to cross-term free TF distributions.
Experimental results are presented and the TF distributions
obtained with the estimated kernel are compared to those ob-
tained with an optimized kernel.

Index Terms— Time-frequency distributions, Cohen’s
Class, L1-norm, sparsity

1. INTRODUCTION

Signals with time-varying frequency content are encountered
in many areas, such as AM/FM communication [1], radar [2],
sonar applications, medicine, audio and speech. An impor-
tant requirement for these types of signals is the identification
of separate components forming the signal in time-frequency
(TF) plane. High resolution TF distributions or representa-
tions are needed to extract TF components of a given signal.
Short Time Fourier Transform (STFT) [3] and Wigner-
Ville (WV) distribution [4] are the classical tools that are be-
ing used for TF analysis. STFT is a linear and relatively easier
transformation. But a good resolution requires a proper win-
dow selection and we can not obtain high resolution both for
time and frequency axis at the same time. WV is a distribu-
tion which provides the high resolution. But, as a result of
its quadratic definition, together with the actual signal com-
ponents that we would like to identify, it also creates so called
cross-components or cross-terms. For this purpose, members
of Cohen’s class [5] which is generalization of WV distribu-
tion are used. In these types of distributions, the aim is to
design the kernel of Cohen’s class distribution to have a high
resolution TF distribution which does not include cross-terms.
In this article a signal dependent kernel estimation method,
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having only two steps, is proposed for a Cohen’s class dis-
tribution. In the first step a distribution is obtained using an
initial rough Gaussian kernel. In the second step this distri-
bution is projected onto the epigraph set of {; norm and a
signal dependent kernel is obtained. Resulting high resolu-
tion distribution do not contain cross-terms. Cohen’s class
distributions are reviewed in Section 2, kernel design method
is introduced in Section 3. Experimental results are presented
in Section 4.

2. COHEN’S CLASS DISTRIBUTIONS

The Wigner-Ville (WV) distribution for a signal z(t) is given
by,

+oo

We(t, f) = / x(t+7/2)x*(t — 7/2)e ™ Tdr. (1)

A generalization of the WV distribution is the Cohen’s class
distribution which is given by,

+oo +oo
Pu(t, f) = / Ap(8,7)D(8, 7)e 327032717 4o i

2
where A, (0, 7) is the ambiguity function (AF) and has a 2D
Fourier transform relation with WV distribution. Ambiguity
function is the basic tool in many target detection applications
and is expressed as,

+oo
Au(0,7) = / 2t +7/2)2" (t — 7/2)e 2 (3)
In Equation (2) ®(6, 7) represents the kernel of the Cohen’s
class distribution and ®(#,7) = 1 corresponds to the WV

distribution. Various kernel design methods are discussed in
[5,6]

3. COHEN’S CLASS KERNEL DESIGN

Initially many fixed kernels were used for Cohen’s class dis-
tributions. Kernels designed by Choi and Williams [6] and
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by Papandreou and Boudreaux-Bartels [7] and recently pro-
posed radial kernels [8] are examples to these kind of kernels.
But later it was realized that the signal dependent kernels can
produce higher resolution and a kernel design method was
proposed by Jones and Baraniuk [9]. The kernel is obtained
by solving the following optimization problem,

27 oo
mw/ /|%m@wmwwmm, @
@r - Jo 0

1 2w e
subject torﬂz/o /0 |®P (1, §)|*rdrde

1

" a2

27
/ P2(O)dd <, >0, )
0

where, AP(r,¢) = A, (rcos,rsin¢) and ®P(r, ) repre-
sents the ambiguity function and the kernel in polar coordi-
nates. Since ambiguity function is an auto-correlation func-
tion its values around the origin (r,¢) = (0,0) corresponds
to main or the auto-components of a multi-component signal
in general [9]. The cross-terms are usually located away from
the origin. For this reason in (4) the kernel is taken as a low-
pass Gaussian filter and o%(¢) represents the variance of the
kernel with respect to the angle in polar representation.

With the optimization in (4) the auto-components are se-
lected as much as possible within the low-pass Gaussian filter
while with the constraint in (5) the pass-band area of the filter
is limited to « to filter out the cross-terms which are located
away from the origin. The desired resolution and the cross
term attenuation is determined by a proper selection of a.

4. KERNEL ESTIMATION BY PROJECTION ONTO
THE EPIGRAPH SET

The kernel design method explained in Section 3 is a multi-
variable optimization method requiring an iterative solution.
In this respect, it is a computationally intensive method com-
pared to the basic WV computation. In this section an al-
ternative method is proposed for the estimation of a signal
dependent kernel.

In many signal processing applications an initial rough
processing reveals some important features of the analyzed
signal, and this will ease the subsequent processing. In Figure
1 two TF distributions that are obtained with fixed and rough
initial kernels are shown. The bottom left distribution is ob-
tained with a circular kernel having radius r = ro = N/16
and the bottom right one is obtained with a Gaussian kernel
having the angular standard deviation o(¢) = N/16, where
N represents the length of the discrete signal obtained by
sampling the signal x(t). The top left distribution is the ideal
or desired model TF distribution corresponding to the signal
and the top right is the WV distribution. In this figure, there
is no adaptation to the signal and both TF distributions are far
from the desired or model distribution. But, compared to the
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Fig. 1. The desired model corresponding to the signal (top
left), WV distribution (top right), TF distribution with circular
(ro = N/16) kernel (bottom left) and the Gaussian (o(¢) =
N/16) kernel (bottom right), where N is the length of the
discrete-time signal.

WYV distribution we observe that the signal has three compo-
nents and their positioning in TF plane is roughly identified.
The fixed kernel TF distributions shown in Figure 1 are, in
a sense, noisy and smeared versions of the model TF we are
looking for. Therefore, considering localization and spurious
structures or cross-terms, they do not carry the the constraints
that we desire and need to be regulated. The way of regular-
ization is to project these TF distributions onto a set which
contains members having desired constraints. In fact the ini-
tial masking with fixed kernels is also a projection. That is,
the projection onto the set of TF distributions whose AF val-
ues outside the mask are zero. Similar to normal de-noising
applications the way of filtering out the high frequency sig-
nal terms is to pass the signal through a low pass filter whose
passband covers the most of the energy of the actual signal.
This operation is a projection onto set of low pass signals con-
taining noiseless signal. In our case we would like to have a
signal which has high resolution or localization in TF plane.
High localization or resolution in TF plane can be obtained by
constraining the [y or /3 norm of the distribution. Therefore
we can get a high resolution distribution by projecting the ini-
tial fixed kernel TF distribution onto the epigraph or level set
of the /; norm as shown in Figure 2 where P represents an
N x N matrix corresponding to discrete time and frequency
version of the distribution given in (2) and vec(P) € RY ’
represents its vector form. w € RV *+1 is vector in lifted do-
main compared to RV *. If we denote the TF distribution that
we have obtained in Figure 1 with fixed kernel as Py, then we
can write,
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f(P) = [lvec(P)|x

Fig. 2. Geometric description of the projection onto the epi-
graph set of /; norm, where vec(P) € RNQ, and w =
[vec(P)T  v]T € RN+ is defined in lifted domain.

PO Z./—"{x4w.@0}7 (6)

where ® is the matrix corresponding to the fixed kernel and
A, is the matrix corresponding to the ambiguity function of
the signal. F{} represents the Fourier transform and e’ de-
notes the element-by-element or Hadamard product.

The epigraph set of the /; norm shown in Figure 2 is de-
fined as:

Cp = {w = [vec(P)" ] € RN+ @)
| f(P) = |lvec(P)|ly < v}

The orthogonal projection of the initial TF distribution Py
onto the epigraph set of [; norm is given by,

P* = mi P) —vec(Py)|5
Igélélf [vec(P) — vec(Po)|l3, ®

where the projection, as shown in Figure 2, is obtained with
vectors wg, w, wx € RY *+1 in lifted domain corresponding
to the vectors Py, P, Px € RV*YN . The implementation of
the projection is explained in [10, 11] and [12]. The initial
fixed kernel TF distribution P, and the related projected TF
distribution P* are shown in Figure 3 for two example sig-
nals.

As can be seen from Figure 3, the TF representations ob-
tained by projection are over localized and far from the model
that we desire. It seems that they corresponds to most local-
ized part of the signal in TF plane. But it is experimentally ob-
served that the projections have an alignment and positioning
similar to the signal. In other words they still carry some in-
formation related to the signal. Again it is observed that if we
get the AF function corresponding to the epigraph projection
with inverse Fourier transform as A* = F~1{P*} and nor-
malize with its maximum magnitude as o, = Wkl'{’?%
it will give us a signal dependent kernel estimate and this ker-
nel will have an alignment similar to that of the signal in AF
domain. In Figure 4 the initial fixed kernel and the estimated
kernels for two example signals are shown. In Figures 5 and 6
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Fig. 3. The initial TF distribution P, (top) and the TF distri-
bution P* (bottom) obtained by projection onto epigraph set
of /1 norm for two signal examples.
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Fig. 4. The initial fixed Gaussian kernel (top) and the signal
dependent kernels obtained by projection onto the epigraph
set of [; norm for two example signals.

the initial TF distributions obtained with fixed kernel and the
TF distributions obtained with estimated kernels are shown.
For the sake of comparison the model or desired TF distri-
butions and the TF distribution obtained with optimization in
(4) are also shown. Figures 5 and 6 shows that compared
to the fixed kernel TF distribution, the TF distribution with
estimated kernel has higher resolution and does not contain
cross-terms. Also, it is observed that the TF distribution with
estimated kernel has a comparable result to TF distribution
obtained with optimization in (4).

Although a fine tuning is not needed for the selection of
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Fig. 5. Comparison of TF distributions obtained by kernel es-
timation for there example signals. Model: the model TF dis-
tribution, TFOK: The TF distribution obtained by kernel op-
timization in (4) with o = 1.4, FK: TF distribution by initial
fixed kernel, TFEK: The TF distribution by kernel estimation
using projection onto epigraph set of /; norm.
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Fig. 6. The comparison of TF distribution for two chirp sig-
nals. Model: the model TF distribution, TFOK: The TF dis-
tribution obtained by kernel optimization in (4) with a = 1.4,
FK: TF distribution by initial fixed kernel, TFEK: The TF dis-
tribution by kernel estimation using projection onto epigraph
set of {; norm.

the initial fixed kernel, it will have an effect on the final TF
distribution with the estimated kernel. After testing various
examples it is experimentally observed that in some cases
there are some spurious terms in final TF distribution with
estimated kernel. It is also observed that such terms can be
eliminated with the selection of initial kernel having an even
smaller standard deviation than o(¢) = N/16. But this is
another matter of optimization. Also, such a fine tuning is
a contradiction to our initial rough and fixed kernel selection
idea. Therefore it has not been preferred. It is also observed
that such terms can be eliminated with applying a mask or
filter G to the initial TF distribution P, obtained with fixed
kernel. This mask is also selected as Gaussian with kernel
set to o(¢) = N/4. Therefore this second approach is pre-
ferred. Including this mask in TF domain, the steps of overall
method for obtaining a high resolution TF distribution based
on the projection onto the epigraph set of /; norm are given in
Table 1.

In Table 2 the similarity and localization or resolution of
TF distributions in Figures 5 and 6 are given. The similarity
is measured using Pearson Correlation of the vectors corre-
sponding to TF distributions and takes the values in the range
[0,1]. The localization or resolution is measured using Renyi
entropy [13]. A lower Renyi entropy indicates a better local-
ization or resolution. As can be seen from the Table 2, for
all the example signals the similarity and the localization of
the proposed kernel estimation based method is comparable
to that of the TF distribution obtained with optimization in
(4). In order to get good results for all of the tested exam-
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5
6
7 P, =F{®,0A,}

Table 1. The steps of overall method for obtaining a high res-
olution TF distribution using the projection onto the epigraph
set of [{ norm

Similarity to model/ Localization

Signal Model FK TFEK TFOK

Signal 1 1/8.13 0.44/11.32 0.60/10.13 0.60/10.19

Signal2 1/7.46 0.41/10.87 0.47/10.31 0.48/10.15

Signal 3 1/8.24 0.39/11.45 0.42/10.37 0.42/10.40

Signal4 1/8.99 0.39/12.38 0.51/9.85 0.55/10.41

Table 2. The similarity to the model / Renyi entropy values of
the TF distributions for the tested example signals

ples, the parameter « in kernel optimization with (4) was set
to a = 1.4. Further examples can be found in [14].

5. CONCLUSION

A non-iterative kernel design method is proposed for Cohen’s
class TF distributions. The method is based on the projection
onto the epigraph set of /; norm. Kernel design results ob-
tained with proposed method are comparable to the results ob-
tained by kernel optimization. Since most signals are sparse
in TF domain the proposed [;-norm based approach reduces
cross-terms which clutter the TF plane.
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