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ABSTRACT

The paper proposes a novel method for room impulse re-

sponse estimation that is robust towards nonlinearities affect-

ing the power amplifier or the loudspeaker of the measure-

ment system. The method is based on measurements of the

first order kernel of the Legendre nonlinear filter modeling the

acoustic path. In the proposed approach, the first order ker-

nel is efficiently estimated with the cross-correlation method

using perfect periodic sequences for Legendre filters. Per-

fect sequences with period suitable for room impulse response

identification are also developed within the paper. Simulation

results in a realistic scenario illustrate the effectiveness and

robustness towards nonlinearities of the proposed approach.

Index Terms— Room impulse response, Legendre non-

linear filters, perfect periodic sequences, cross-correlation

method

1. INTRODUCTION

Room impulse response (RIR) estimation is an important tool

in audio processing. It is used for analyzing and characteriz-

ing the room response (measuring parameters like reverber-

ation time, early decay time, definition, clarity, center time,

etc.), spatial sound rendering, virtual audio, room response

equalization, active noise control, room geometry inference,

and many other applications. Different techniques have been

proposed for RIR estimation. The most popular ones have

been the maximal length sequence (MLS), the time-stretched

pulse, the time delay spectrometry [1], the perfect periodic

sequences (PPSs) for linear filters [2], and the exponential

sweep technique [3]. Recently, perfect exponential sweeps

have also been proposed [4]. While the room acoustic path

can be considered as linear system, the power amplifier and

the loudspeaker (PAL) system used to reproduce the test sig-

nals are often affected by nonlinearities, caused by the high

reproduction levels used to contrast noise. As a result many

of the RIR measurement techniques suffer from the nonlin-

earities. From this point of view, a remarkable technique is

that based on exponential sweeps, which is immune to non-

linearities if the acoustic path can be modeled as a memory-
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less nonlinearity followed by a linear filter [3], [5]. Unfor-

tunately, memoryless nonlinearities rarely occur and also the

exponential sweep technique has been proved vulnerable to

nonlinearities [6], [7].

In this paper, a novel technique for RIR estimation that is

robust towards the nonlinearities that may affect the PAL sys-

tem is proposed. To account for these nonlinearities the PAL

system is modeled as a Legendre nonlinear filter [8], [9]. Leg-

endre filters are polynomial filters, whose basis functions are

product of Legendre polynomials of the input signal samples,

and they have a first order kernel which is a linear filter. As

the well known Volterra filters, Legendre filters can arbitrar-

ily well approximate any discrete-time, causal, time-invariant,

finite-memory, continuous nonlinear system. In contrast to

Volterra filters, their basis functions are orthogonal for white

uniform input signals in [−1,+1]. It was also shown in [9],

[10] that PPSs can also be developed for these filters. PPSs

are periodic sequences that guarantee the orthogonality of the

basis functions on a finite period. Using a PPS as input signal,

a Legendre filter can be efficiently identified with the cross-

correlation method, i.e., computing the cross-correlation be-

tween each basis function and the system output. It is shown

in the paper that the RIR can be recovered measuring with

PPSs the first order kernel of the acoustic path. Unfortu-

nately, the sequences developed in [9], [10] cannot be used

for this purpose, because their period increases geometrically

with the length of the filter. Even for low lengths the period

can be prohibitively large. Nevertheless, since only the first

order kernel has to be measured in this application, the con-

straints for the development of the PPS can be reduced. In

this way, PPSs suitable for RIR estimation, whose period in-

creases linearly with the RIR length, are derived. It is inter-

esting to note that the proposed approach for RIR estimation

can be implemented with the same measurement operations

and computations of the methods for linear filters based on

MLSs and PPSs. Only the input signal and the interpretation

of the measured quantities change.

The paper is organized as follows. In Section 2, Legendre

filters are reviewed. In Section 3, the proposed RIR measure-

ment method is described. In Section 4, simplified PPSs for

Legendre filters are developed. Simulation results illustrating

the effectiveness and robustness towards nonlinearities of the
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proposed approach are presented in Section 5. Conclusions

follow in Section 6.

2. LEGENDRE FILTERS

Legendre filters introduced in [8], [9] can arbitrarily well ap-

proximate the input-output relationship of any discrete-time,

time-invariant, finite-memory, causal, continuous, nonlinear

systems given by

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

where f is a real continuous function and x(n) belongs to

[−1,+1]. They are polynomial filters whose basis functions

are product of Legendre polynomials. The basis functions of

orders 1, 2, and 3, memory length N , and diagonal number

D are reported in Table 1. The diagonal number D is defined

as the maximum time difference between the input samples

involved in each basis functions. When D = N − 1, a com-

plete Legendre filter is obtained, but it has been shown that a

simplified filter having D ≪ N − 1 is often sufficient to ac-

curately model many real systems [9]. In Table 1, legk(ξ) is

the k-th order Legendre polynomial satisfying the recursion

legk+1(ξ) =
2k + 1

k + 1
ξlegk(ξ)−

k

k + 1
legk−1(ξ), (2)

with leg0(ξ) = 1, leg1(ξ) = ξ. The basis function of order 0
is the constant 1, which is neglected in the following.

A Legendre filter of order 3, memory N , and diagonal number

D is a linear combination of the basis functions of Table 1.

The filter can be implemented in the form of a filter bank as

follows

ŷ(n) = h1(n) ∗ x(n) +
D
∑

i=0

h2,i(n) ∗ b2i(n) +

+
D
∑

i=0

D
∑

j=i

h3,i,j(n) ∗ b3,i,j(n) (3)

where ∗ indicates convolution, b2,i(n) and b3,i,j(n) are the

zero-lag basis functions of 2-nd and 3-rd order. Specifically,

b2,0(n) = leg2[x(n)], b2,i(n) = x(n)x(n−i) with i = 1...D,

b3,0,0(n) = leg3[x(n)], b3,0,j(n) = leg2[x(n)]x(n − j) with

j = 1...D, b3,i,i(n) = x(n)leg2[x(n − i)] with i = 1...D,

and b3,i,j(n) = x(n)x(n− i)x(n− j) with i = 1...D−1 and

j = i+ 1...D.

h1(n) is the first order kernel, i.e., a sequence of length N

collecting the coefficients of the linear terms x(n− i). Using

the same naming convention of Volterra filters, h2,i(n) with

i = 0...D are the diagonals of the second order kernel, and are

sequences of length N−i. Similarly, h3,i,j(n) with i = 0...D
and j = i...D are the diagonals of the third order kernel with

N − j elements.

The first order kernel should not be confused with the im-

pulse response of the nonlinear filter, which is

ĥ(n) = lim
A−→0

ŷ[Aδ(n)]

A
with ŷ[Aδ(n)] the filter response to a pulse sequence of ampli-

tude A. Indeed, also the basis functions leg2k+1[x(n)], with

Table 1. Basis functions of Legendre filters.

Order 1:
x(n), x(n− 1), . . . , x(n−N + 1)

Order 2:

leg2[x(n)], leg2[x(n− 1)], . . . , leg2[x(n−N + 1)],
x(n)x(n− 1), ..., x(n−N + 2)x(n−N + 1),

...

x(n)x(n−D), ..., x(n−N +D + 1)x(n−N + 1).

Order 3:

leg3[x(n)], leg3[x(n− 1)], . . . , leg3[x(n−N + 1)],
leg2[x(n)]x(n− 1), ...

..., leg2[x(n−N + 2)]x(n−N + 1),
...

x(n)x(n− 1)x(n− 2), ...
..., x(n−N + 3)x(n−N + 2)x(n−N + 1),

...

x(n)x(n−D + 1)x(n−D), ...
..., x(n−N +D + 1)x(n−N + 2)x(n−N + 1),

k ≥ 1, include a linear term that contributes to the impulse

response.

It was shown in [9], [10] that the Legendre filters admit

PPSs, i.e., periodic sequences that guarantee the orthogonal-

ity of the basis functions over a period. Let us indicate with

< · >L the time average over the period L of the PPS. With

a PPS input signal, for any couple of distinct basis functions

bi(n) and bj(n), < bi(n)bj(n) >L= 0 and the coefficients of

the Legendre filter can be efficiently computed with the cross-

correlation method. For example, the m-th coefficient of the

first order kernel, is given by

h1(m) =
< ŷ(n)x(n−m) >L

< x2(n) >L

. (4)

The expression in (4) is equal to that used for identifying the

impulse response of linear systems with MLSs or PPSs, only

the periodic sequence changes.

3. ROOM IMPULSE RESPONSE MEASUREMENT

Let us consider the RIR measurement system of Figure 1,

which is composed of a power amplifier, a loudspeaker, the

room acoustic path, and a microphone. The room acoustic

path can be considered a linear system and the objective is to

measure its impulse response hR(n), which has length M .

First, it is assumed that the power amplifier and the loud-

speaker are linear systems. In this case, h1(n) is the impulse

response of the PAL system, which has length N . The im-

pulse response of the microphone can be accounted within

the PAL system. Thus, the entire measurement system has

impulse response hT(n) = h1(n) ∗ hR(n) with length NT =
M + N − 1. In the classical approach for RIR estimation,

h1(n) is measured in an anechoic chamber, hT(n) in the spe-

cific room to be characterized, and the RIR is estimated from
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ŷ(n)

m̂(n)

h1(n) hR(n)

hT(n)

Fig. 1. The measurement system.

hT(n) with the equalization of the equipment [11]. For ex-

ample, assuming the loudspeaker response is omnidirectional

in the frequency range of operation, the equalization can be

performed as in [11] with the Kirkeby algorithm, as follows:

hR(n) = IFFT

[

FFT[hT(n)] · FFT[h1(n)]
∗

FFT[h1(n)] · FFT[h1(n)]∗ + ǫ(ω)

]

,

(5)

where FFT[·] and IFFT[·] are the direct and inverse FFT op-

erators, respectively, and the operations are performed at the

single frequencies. ǫ(ω) is a frequency-dependent regulariza-

tion parameter.

Very often the RIR is estimated by measuring only hT(n)
and in that case the measure is affected by, i.e., convolved

with, the impulse response of the PAL system.

Assume now the power amplifier and the loudspeaker are

affected by nonlinearities and that the input-output relation-

ship of the PAL system can be represented with a Legendre

filter of order K, memory N , and diagonal number D. For

K = 3, the input-output relationship is given by (3). In this

case, h1(n) is the first order kernel of the Legendre filter and

has length N . The input-output relationship of the entire mea-

surement system is given by

m̂(n) = hR(n) ∗ ŷ(n) = hR(n) ∗h1(n) ∗x(n)

+
D
∑

i=0

hR(n) ∗ h2,i(n) ∗ b2i(n)

+
D
∑

i=0

D
∑

j=i

hR(n) ∗ h3,i,j(n) ∗ b3,i,j(n). (6)

This is still the input-output relationship of a Legendre filter

having order K = 3, memory NT = M +N − 1, and diag-

onal number D. The first order kernel of the system in (6) is

hT(n) = hR(n) ∗ h1(n). h1(n) can be measured in an ane-

choic chamber applying a suitable PPS for Legendre filters

and using (4). hT(n) can be measured in the specific room to

be characterized with the same approach. Note that, since the

filters in (3) and (6) depend on the amplitude range of the in-

put signal, the PPS amplitude (i.e., the reproduction volume)

should be the same in both measurements. Eventually, hR(n)
can be estimated with the Kirkeby algorithm as in (5). Thanks

to the orthogonality of the basis functions for a PPS input sig-

nal, the measurements of h1(n) and hT(n) are not influenced

by the nonlinear kernels, i.e., by h2,i(n) and h3,i,j(n) for all

i, j. Thus, the RIR measurement is not affected by the non-

linearities of the power amplifier or the loudspeaker.

When the RIR is directly estimated with hT(n), the mea-

sure is affected by, i.e., convolved with, the first order kernel

of the PAL system, whose spectrum however is not much dif-

ferent from the frequency response of the PAL system.

When the acoustic path has length or nonlinearity order

larger than those considered in the PPS, as discussed in [9] the

measurements of h1(n) and hR(n) are affected by an alias-

ing error. Nevertheless, since the PPS is similar to a white

uniform noise in [−1,+1], for which all Legendre basis func-

tions are orthogonal, the aliasing errors are often negligible.

4. PPS FOR RIR ESTIMATION

PPSs suitable for the RIR estimation need to be developed.

In [9], [10], PPSs appropriate for the identification of Leg-

endre filters of order K, memory N , and diagonal number

D = N − 1 were developed by considering a periodic se-

quence with L unknown variables and imposing the orthogo-

nality of all the basis functions over the period, i.e.,

< bi(n)bj(n) >L= 0 (7)

for any couple of distinct basis functions bi(n), bj(n). For

sufficiently large period L, the system is under-determined

and may have infinite solutions. Indeed, a solution for (7)

has always been found [9]. The system in (7) has number

of equations and variables that increases geometrically with

the memory N and exponentially with the order K. The

period of the PPSs obtained solving (7) increases geometri-

cally with the order N and even for low values of N can be

prohibitively large. Nevertheless, the system in (7) imposes

more constraints than needed for RIR estimation. Indeed, in

our case only the first order kernel of the systems in (3) and

(6) has to be estimated. Consider the system in (6) of length

NT . A PPS suitable for the first order kernel estimation must

guarantee the orthogonality of the basis functions x(n), ...,

x(n−NT +1) with any other basis functions involved in the

input-output relationship in (6). Such a PPS can be found by

imposing the conditions in (8), (9), and (10):

< x(n)bi(n) >L= 0 (8)

for all basis functions bi(n) in (6) with bi(n) 6= x(n);

< b2,i(n)x(n− k) >L= 0 (9)

for all i = 0...D and k = 1...NT − 1;

< b3,i,j(n)x(n− k) >L= 0 (10)

for all i = 0...D, j = i...D, and k = 1...NT − 1.

The number of equations in the system (8)-(10) increases ex-

ponentially with the order K, geometrically with the number

of diagonals D, but linearly with the RIR length NT . By

considering a sufficiently large period L, the system (8)-(10)

is under-determined and can be solved with any algorithm for

nonlinear equation systems. We found particularly efficient

the Newton-Raphson method, implemented as in [12, ch.
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Table 2. PPSs for RIR estimation.
Sequence NT K D L log2(L)

1 8192 3 0 131060 17

2 8192 3 1 262132 18

3 8192 5 0 262132 18

4 8192 3 2 524276 19

5 8192 5 1 1244656 20.2

6 8192 3 3 2359264 21.2

9.7], starting from a random uniform distribution in [−1,+1]
of the variables.

The number of equations and variables can be further re-

duced imposing a specific structures to the PPS. For example,

as shown in [9] the number of equations and variables can al-

most be halved by exploiting symmetry (for each N -sample

sub-sequence there is a symmetric sub-sequence), oddness

(for each N -sample sub-sequence there is the negated one),

oddness-1 (for each N sample sub-sequence there is a sub-

sequence formed by alternatively negating the samples), ...,

oddness-2P (for each N sample sub-sequence there is a sub-

sequence formed by alternatively negating blocks of 2P sam-

ples). The reduction in the number of equations is obtained at

the expense of a longer period of the resulting PPS, but it is

often determinant to be able to solve the system in (8)-(10).

Indeed, the Newton-Raphson algorithm has memory and pro-

cessing time requirements that grow with the cube of the num-

ber of equations.

Using these conditions, PPSs suitable for the RIR have

been developed. Table 2 summarizes the characteristics of

the PPSs used for the simulations of Section 5. The first four

sequences exploit symmetry, oddness, oddness-1; Sequence 5

exploits oddness, oddness-1, -2, -4, and Sequence 6 exploits

oddness, oddness-1, -2, -4, -8. The sequences can be down-

loaded from www.units.it/ipl/res PSeqs.htm.

5. SIMULATIONS RESULTS

In this section the performance of the proposed method is as-

sessed and compared with that of the MLS technique, the ex-

ponential sweep approach, and the perfect sweep technique,

simulating the measurement system of Fig. 1. Specifically,

the power amplifier has been emulated with a real nonlinear

device, i.e., a Behringer Tube Ultragain MIC 100 vacuum

tube pre-amplifier. The input signals have been applied to

the pre-amplifier and the corresponding outputs have been

recorded at 44.1 kHz sampling frequency. Acting on the

gain control of the pre-amplifier, different levels of nonlinear

distortions can be generated. In particular, 14 different set-

tings, with increasing level of nonlinear distortion, have been

considered in the experiments. Table 3 shows the second

(Dist2), third (Dist3), and total (DistT ) harmonic distortions

at the different settings measured with a 1 kHz sinusoidal

signal with the maximum amplitude used in the experiments.

The nonlinear distortions considered in the simulations have

much higher values than those found in any real measurement

system, but they have been purposely chosen so high in or-

der to stress the differences between the competing methods.

The output of the pre-amplifier has been applied to the loud-

speaker model, a linear system having the impulse response

of a real loudspeaker measured in anechoic chamber. The

room impulse response has also been simulated with a pre-

viously measured real room impulse response. The memory

length NT is around 8000 samples.

The evaluation has been performed in terms of log-

spectral distance (LSD) in the loudspeaker passband [ω1, ω2],
which is defined as

LSD =

√

1

ω2 − ω1

∫ ω2

ω1

10 log10
|HR(ejω)|2

|ĤR(ejω)|2
dω, (11)

where |HR(e
jω)| is the actual room magnitude response, and

|ĤR(e
jω)| is the estimated room magnitude response.

Fig. 2 shows the results obtained in terms of LSD as a

function of the increasing level of nonlinear distortion, con-

sidering different sequence orders for each of the aforemen-

tioned methods. The order of a sequence of period/length L is

log2(L). In Fig. 2, for low nonlinear distortion all the meth-

ods show low values of LSD. However increasing the distor-

tion level, each method has a different behaviour. In particu-

lar, for low orders the MLS estimation is affected by the well-

known problem of nonlinear “spikes,” while it is not affected

by nonlinearities for orders greater than 17. The exponential

sweep shows in general good results (apart from order 19)

but degrades its performance at very high distortion levels.

The exponential sweep improves its robustness towards non-

linearities increasing the order, i.e., period, of the sequence.

The proposed technique shows good results in all considered

cases, and for a diagonal number D > 0, i.e., for sequences

2, 4, 5, and 6, appears to be almost immune to nonlinearities,

even at high distortion levels. It can be observed that, for the

same range of orders, the envelop of the curves in Fig. 2-(d) is

much tighter than that of Fig. 2-(b) and (c), indicating a more

robust behaviour in these experimental conditions.

6. CONCLUSIONS

In this work, a novel method for room impulse response es-

timation robust towards nonlinearities affecting the power

amplifier or the loudspeaker of the measurement system has

been presented. The method is based on measurements of the

first order kernel of the Legendre filter modeling the acous-

tic path, taking advantage of perfect periodic sequences and

cross-correlation method. The effectiveness of the proposed

approach has been presented considering simulation results

in a realistic scenario and comparing it with well-known tech-

niques of the state of the art. In particular, different levels

of nonlinear distortion have been considered, confirming the

robustness of the proposed approach that is always capable to

achieve good results in terms of log-spectral distance.
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Table 3. Second (Dist2), third (Dist3), and total (DistT ) harmonic distortion in percent at different settings.

Setting 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Dist2 2.6 3.1 4.0 4.9 5.5 6.3 7.2 7.8 4.7 0.9 7.8 18.2 36.3 38.8
Dist3 0.5 0.7 1.0 1.4 2.0 2.9 4.0 6.1 12.0 18.4 22.5 22.9 9.9 6.7
DistT 3.3 4.0 5.2 6.5 7.8 9.8 12.6 16.5 22.9 27.3 45.9 77.0 149 161
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Fig. 2. Log-spectral distance at the different settings for (a)

MLS, (b) exponential sweep, (c) perfect sweep, and (d) pro-

posed perfect sequence.
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