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ABSTRACT
Particle filters are currently widely used for visual tracking. In

order to improve their performance, we propose to enrich the

observation model with soft detection information and to de-

rive a near-optimal proposal to efficiently propagate particles

in the state space. This information reflecting probabilities

about the object location is more reliable than the usual binary

output which can yield false or missed detections. Moreover,

our proposal not only incorporates the observations as in pre-

vious works, but relies on a close approximation of the op-

timal importance function. The resulting PF achieves high

tracking accuracy and has the advantage of coping with un-

predictable and abrupt movements.

Index Terms— Visual tracking, Monte-Carlo methods,

particle filtering, optimal importance function, soft detection.

1. INTRODUCTION

Visual tracking is one of the most fundamental tasks in many

vision applications, such as intelligent surveillance, traffic

monitoring, human-computer interaction... Among the many

tracking methods [1–3], particle filters (PFs) are currently

widely used. Their efficiency strongly depends on the impor-

tance function (also called the proposal) which explores the

state space. The simplest proposal is the prior density related

to the dynamic model. But the object displacement between

two video frames can be difficult to predict in case of abrupt

movements due to dynamics variations, low frame rate videos

and switching between cameras.

As demonstrated in [4], the optimal importance function

in the sense of weight variance minimisation takes into ac-

count the current observations. In a few cases, a Gaussian

approximation can be derived by linearisation [5]. But in

most cases, computing the optimal proposal is impossible be-

cause the analytic form is unavailable or calculations are pro-

hibitive. The challenge in visual tracking is then to select the

most relevant observations and to make the best use of them

to efficiently propagate the particles in the state space.

Two main strategies have been proposed. Implicit ap-

proaches use the prior proposal and add a step to guide the

particles from the observations. The auxiliary PF [6–8] pre-

selects particles before their propagation and improves per-

formance when the state noise is small. Hybrid PFs include

an optimization stage based on mean shift [9, 10] or heuris-

tics [11, 12]. The drawback is that they can leave the the-

oretical framework of PFs, since each particle move can al-

ter the filtering density. Explicit approaches are more direct

and build the importance function from the observations. It

is based on a Gaussian mixture model (GMM) between the

prior density and a density centred on specific points, which

can be the locations of high motion activity [13] or the cen-

troids of detected silhouettes [14, 15]. Several detectors can

be combined to overcome their unreliability [16].

In this paper, we propose to enrich the observation model

with soft detection information and to derive a near-optimal

proposal. This intermediate information, obtained in detec-

tors before hard decision, reflects probabilities about the ob-

ject location. It is more reliable than the usual final binary out-

put which can yield detection errors. Soft detection informa-

tion has already been used in PFs for particle weighting [17],

but according to our knowledge, it has never been exploited

for particle drawing. Moreover, our proposal not only incor-

porates the current observations as in previous works [13–16],

but it relies on a close approximation of the optimal impor-

tance function [4]. The resulting PF achieves high tracking

accuracy and successfully handles the uncertainty of the dy-

namic model encountered in real-world situations.

This paper is organised as follows. Section 2 presents the

general formulation of the visual tracking problem. In Sec-

tion 3, our soft detection based near-optimal proposal is de-

scribed. Section 4 presents performance results obtained on

public datasets. Conclusions are finally drawn in section 5.

2. VISUAL TRACKING PROBLEM FORMULATION

This paper deals with single object tracking along a sequence

of images. The aim is to estimate the object dynamic state xk

from a sequence of observations y1:k = (y1, ..., yk). In the

Bayesian framework, the distribution of interest is the poste-

rior p(xk|y1:k), also called the filtering density. This density

is recursively expressed using the Bayes rule:

p(xk|y1:k) ∝ p(yk|xk)·
∫

p(xk|xk−1)·p(xk−1|y1:k−1)dxk−1
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where the prior density p(xk|xk−1) represents the dy-

namic evolution of the state xk given the previous state xk−1,

and the observation likelihood p(yk|xk) measures the match-

ing accuracy of the observation yk given the state xk.

2.1. Dynamic model

The object is represented by a bounding window. The state

vector is defined as xk = {ck, sk} with ck = {cxk, cyk}
the position of the top left corner and sk = {sxk, syk} the

size of the window. To address any type of movement, we

consider a dynamic model with little information. As in

most works [13–16], we assume that the components of xk

evolve as mutually independent Gaussian random walks:

xk|xk−1 ∼ N (xk−1,Σ) where Σ = diag(σ2
c , σ

2
c , σ

2
s , σ

2
s) is

the covariance matrix which defines the uncertainty region

around the previous state. In real scenarios, the object can

perform large amplitude changes in position while the size

evolves smoothly. Therefore the position variance σ2
c is much

larger than the size variance σ2
s .

2.2. Observation model

The observation model includes the usual colour information

and is enriched with soft detection information extracted from

each image Ik.

The colour information is expressed as a set of RGB his-

tograms: yHk = hist(Ik · R(xk)) with R(xk) the region de-

fined by xk. As in [18], the region R(xk) is divided into

multiple subregions to take into account the colour spatial dis-

tribution. A histogram is then computed for each colour and

each subregion.

The soft detection information is provided via a motion

detector [19] able to detect any kind of object. The princi-

ple is to model the background and foreground homogeneous

regions by an adaptive GMM in a spatio-colorimetric feature

space. Then the pixel classification is based on maximum

likelihood and provides a binary mask called the hard detec-

tion map. Here, we exploit a richer information that is avail-

able in the algorithm before classification. This is the proba-

bility map (or soft detection map): yDk = [Pi,j ] where Pi,j is

the probability that the pixel located at the position (i, j) be-

longs to the foreground. This type of map is accessible in any

visual tracking system because a detector is always required

to automatically detect the presence of an object of interest.

Figure 1 shows an example of soft and hard detection maps.

Both of these information are fused in the conventional

way by assuming that they are conditionally independent

given the state [13, 20]. Then the overall likelihood is:

p(yk|xk) = p(yHk |xk) · p(yDk |xk) = LH · LD (1)

where LH is the usual colour likelihood [21] defined from

the Bhattacharyya distance DB between the Nb bin reference

Fig. 1. Detection maps (left to right: original image, soft de-

tection map, hard detection map)

histograms Href
k and candidate histograms yHk for the 3 RGB

channels and the S subregions of R(xk):

LH ∝ exp

(
−λ

3∑
p=1

S∑
r=1

D2
B

(
yHk (p, r), Href

k (p, r)
))

(2)

And LD is the detection likelihood defined from the soft

detection map yDk = [Pi,j ] as follows:

LD ∝ exp

⎛
⎝λ1.

∑
(i,j)∈R(xk)

Pi,j − λ2 ·N(sk)

⎞
⎠ (3)

with N(sk) the number of pixels inside the region R(xk)
with size sk. This formulation avoids that larger regions are

systematically encouraged. We can note that this expression

is similar to that proposed in [22], except that it contains the

probability Pi,j instead of a normalized distance from the

background. λ, λ1 and λ2 are weighting coefficients whose

values are empirically chosen.

3. PF WITH THE NEAR OPTIMAL PROPOSAL

Our approach is based on particle filtering which consists

in recursively approximating the filtering density p(xk|y1:k)
with a set of Np weighted particles {x(i)

k , w
(i)
k }Np

i=1 evolving

in the state space: p(xk|y1:k) ≈
∑Np

i=1 w
(i)
k · δ(xk − x

(i)
k ).

3.1. General framework

To obtain the set of particles at time k from the previous

particles {x(i)
k−1, w

(i)
k−1}Np

i=1, we draw the samples x
(i)
k us-

ing a generic importance function (also called a proposal)

q(x
(i)
k |x(i)

k−1, yk), and then we update the associated weights

according to the recursive expression:

w
(i)
k ∝ w

(i)
k−1 ·

p(yk|x(i)
k ) · p(x(i)

k |x(i)
k−1)

q(x
(i)
k |x(i)

k−1, yk)
(4)

The choice of the proposal is essential to perform an effi-

cient exploration of the state space and to ensure a high level

of tracking performance. The optimal proposal (in the sense
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of weight variance minimisation) takes into account the cur-

rent observations [4] and is expressed as:

p(xk|xk−1, yk) =
p(yk|xk) · p(xk|xk−1)∫

p(yk|xk) · p(xk|xk−1) · dxk
(5)

As shown in section 2, the prior density is simple but the like-

lihood is complex. So the analytic evaluation of the optimal

proposal is intractable. Moreover, a pointwise evaluation is

computationally too expensive.

3.2. Proposed near-optimal importance function

To efficiently explore the state space, our objective is to find

a compromise between computational complexity and impor-

tance function optimality. Our approach relies on an approxi-

mation of the optimal proposal (5) from an approximation of

the likelihood p(yk|ck, sk) (1), which is the most expensive

component in terms of computations.

According to the assumptions of subsection 2.1, the po-

sition ck and the size sk of the object evolve independently,

and even in case of abrupt changes in position, the size varies

smoothly. Then the likelihood depends much more on the

position ck than on the size sk of the region R(xk). To signif-

icantly reduce the computational cost of the denominator in

expression (5), the likelihood is evaluated for a unique value

of sk: s̃k = E[sk|ŝk−1] with ŝk−1 the estimated size at time

k − 1. For a Gaussian prior density, s̃k = ŝk−1.

With the same purpose, since the likelihood based on soft

detection information is computationally much less expen-

sive than the usual colour likelihood LH , only the former

LD = p(yDk |ck, sk) is considered in the optimal proposal ex-

pression (5). Indeed, according to expressions (2) and (3), for

a given value of xk, LD requires N(sk) additions, while LH

needs to calculate 3S histograms for the region R(xk) and all

the distances to the reference histograms, which represents

3 (N(sk) + 3NbS) operations. However LH is still used in

the calculation of particle weights.

The optimal proposal is then approximated by:

p̂(xk|xk−1, yk) =
p(yDk |ck, s̃k) · p(ck|ck−1) · p(sk|sk−1)

p̂(yDk |ck−1, sk−1)

with:

p̂(yDk |ck−1, sk−1) =
∫ ∫

p(yDk |ck, s̃k)·p(ck|ck−1)·p(sk|sk−1)·
dck · dsk =

∫
p(yDk |ck, s̃k) · p(ck|ck−1) · dck

Finally, the near-optimal importance function can be writ-

ten as the product of two densities: a near-optimal proposal

for ck and the prior proposal for sk:

p̂(xk|xk−1, yk) = p(ck|ck−1, s̃k, y
D
k ) · p(sk|sk−1) (6)

with:

p(ck|ck−1, s̃k, y
D
k ) =

p(yDk |ck, s̃k) · p(ck|ck−1)

p(yDk |ck−1, s̃k)
(7)

In order to simplify the sampling of ck, p(ck|ck−1, s̃k, y
D
k )

is considered as a discrete distribution with a finite sup-

port on ck, therefore p(yDk |ck−1, s̃k) =
∑

ck
p(yDk |ck, s̃k) ·

p(ck|ck−1).

3.3. Tracking algorithm

Our tracking algorithm relies on an implementation of the PF

using the near-optimal proposal. According to (6), we draw

the particles in two steps: the position is drawn from the dis-

crete distribution defined by (7), and the size is drawn from

the Gaussian prior density. By replacing the importance func-

tion by the near-optimal proposal (6) in the weight expression

(4), we obtain the following expression to update the weights:

w
(i)
k = w

(i)
k−1 ·

p(yk|c(i)k , s
(i)
k ) · p(yDk |c(i)k−1, s̃k)

p(yDk |c(i)k , s̃k)
(8)

4. EXPERIMENTAL RESULTS

To validate our approach, simulations have been carried out

on several video sequences: ”Walking” and ”Running” ex-

tracted from PETS’06 and BEHAVE datasets and ”Side” and

”Front” from our own dataset. As shown in Figure 2, they

represent a person walking or running in different directions

relative to the camera (diagonal, sideways, front) and corre-

spond to scenarios with different position and size variations.

In addition, to simulate video streams with a variable frame

rate, the sequences are downsampled with a rate DS. We

compare several PFs using different proposals:

- A Gaussian prior proposal for the conventional PF (PF) [4]

and the auxiliary PF (APF) [6] which also includes a pre-

selection of particles.

- A proposal based on hard detection information for the

boosted PF (BPF) [14]. This proposal is a GMM between

the prior density and a density centred on the detected object.

The weight of the detection based density is denoted α.

- A proposal based on soft detection information (6) for our

near optimal filter (NOPF).

For each experimentation, the initialisation is manual and

the parameters are : S = 4 bands, Nb = 10 bins for each

RGB channel, λ = 3, λ1 = 4, 55.10−4, λ2 = 5, 5.10−5. The

number of particles and the covariance matrix are chosen to

fit the sequences. For ”Walking” and ”Running”, Np = 100
and for ”Front” and ”Side” of larger size, Np = 200. For all

the sequences except ”Front”, Σ = diag(1600, 1600, 2, 2) to

define a large exploration area around the previous position.

For the ”Front” sequence, Σ = diag(200, 200, 50, 50) to take

into account lesser changes in position and larger variations

of the size.

Figure 2 shows some tracking results for a downsampling

rate DS = 10. In the ”Walking” sequence, the PF and BPF
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Fig. 2. Tracking results obtained with PF (green), BPF with

α = 2/3 (red) and NOPF (black) for DS = 10 (left to right:

”Walking”, ”Running”, ”Side” and ”Front” sequences).
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Fig. 3. Average F-measure versus the DS rate for the ”Walk-

ing” sequence.

can track the object but with less accuracy than the NOPF.

The ”Running” and ”Side” sequences present more challeng-

ing scenarios : a fast moving target with considerable changes

in shape and a dark coloured target passing through dark ar-

eas. The PF and BPF get trapped due to the high speed and the

similarity of the target with the dark background area. They

also lose the target near the end of the ”Front” sequence be-

cause they are misled by illumination variations. In all these

situations, the NOPF succeeds in accurately tracking the ob-

ject through better exploration of the state space.

Figure 3 represents the average F-measure versus the

DS rate for the ”Walking” sequence. This indicator [23]

combines the precision and the recall between the ground

truth data and the estimated data. Even with a high position

variance σ2
c , the performance of the PF and APF algorithms

quickly decrease as DS increases. The prior proposal does

not properly explore the state space in case of abrupt move-

ments. In the APF, the pre-selection of the particles according

to the observations does not bring any improvement because

the state noise is too large. The BPF provides better tracking

performance specially when giving more weight to the detec-

tion component (α = 2/3 and 9/10). These results highlight

DS

rate PF/APF

BPF

(0.5)

BPF

(0.66)

BPF

(0.9) NOPF

”R
u

n
n

in
g

”

2 34% 55% 66% 79% 100%

5 27% 37% 55% 78% 100%

10 24% 31% 36% 65% 94%

”S
id

e”

1 34% 41% 49% 50% 87%

5 26% 34% 40% 44% 79%

10 27% 33% 32% 41% 68%

Table 1. Success rate versus the DS rate for ”Running” and

”Side” sequences.

DS

rate PF/APF

BPF

(0.5)

BPF

(0.66)

BPF

(0.9) NOPF

1 38% 38% 37% 38% 56%

10 36% 36% 37% 38% 61%

Table 2. Average F-measure versus the DS rate for the ”Front”

sequence.

the benefits of introducing detection information in the pro-

posal. The NOPF offers a very great tracking accuracy and

robustness against unpredictable movements. The average

F-measure remains constant and higher than 80% up to DS

= 30. Our proposal using soft detection results closely ap-

proximates the optimal importance function while the GMM

based on hard detection is a rough approximation.

Table 1 summarises the success rate obtained with the dif-

ferent trackers over ”Running” and ”Side” sequences. In each

frame, the tracking result is considered as a success if the F-

measure is higher than 50%. Compared with the previous

video, on ”Running”, the decrease in performance occurs for

lower DS rates with the PF and BPF because of the target high

speed. The results confirm the previous analysis: the interest

in using detection information in the proposal and the best

performance of the NOPF with a success rate close to 100%.

For ”Side”, the success rate is already low without downsam-

pling. The hard detection results are not precise enough to

avoid the local traps in the background areas similar to the

object. Due to more reliable soft detection information and

close approximation of the optimal proposal, the NOPF out-

performs the PF and BPF.

The ”Front” sequence is interesting to validate our ap-

proach in the case of larger variations of the target size. Table

2 provides the average F-measure obtained with the different

PFs. The good performance obtained by the NOPF shows

that our proposal, which is the product of a near-optimal

proposal for the position and the prior proposal for the size,

still efficiently guides the particles when the object size varies

more significantly.
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Concerning the computational complexity, our algorithm

introduces additional operations for the calculation of the dis-

crete distribution (7). Its evaluation involves the multiplica-

tion of the detection likelihood by the Gaussian prior density

for several positions ck within the 99.7% confidence interval

around the previous sample c
(i)
k−1. The asymptotic complexity

is still in O(Np) as for a conventional PF but the number of

operations is approximatively multiplied by 36σ2
c . In return,

the NOPF can perform a successful tracking with a very small

number of particles.

5. CONCLUSION

In this paper, we have proposed a PF with a soft detection
based near-optimal importance function for single object
tracking in videos. Soft detection information is more reli-
able than usual binary information which can yield detection
errors and allows us to design an efficient proposal. Our
proposal relies on a close approximation of the optimal im-
portance function and ensures that particles are exclusively
drawn in the most likely areas of the state space. Experimen-
tal results highlight the benefits of exploiting soft detection
information in the proposal, the relevance of the hypothe-
ses retained in the approximation and the robustness of the
tracking algorithm against abrupt movements.
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