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ABSTRACT

This paper considers the implementation of an Active Noise
Control (ANC) system over a network of distributed acoustic
nodes. Single-channel nodes composed of one microphone,
one loudspeaker, and a processor with communication capa-
bilities have been considered. An equivalent solution to the
Multiple Error Filtered-x Least Mean Square algorithm (Me-
FxLMS) has been chosen because is a widely used algorithm
in ANC systems with centralized processing. The proposed
algorithm has been implemented with block-data processing
as commonly happens in practical systems. Furthermore, the
algorithm works in the frequency domain and with partition-
ing of the filters for improving its efficiency. Therefore, we
present a new formulation to introduce a distributed algorithm
based on the Me-FxLMS together with an incremental collab-
orative strategy in the network. Results demonstrate that the
scalable and versatile distributed algorithm exhibits the same
performance than the centralized version. Moreover, the com-
putational complexity and some implementation aspects have
been analyzed.

Index Terms— Distributed Networks, Active Noise Con-
trol, Filtered-x Least Mean Square,

1. INTRODUCTION

A wireless acoustic sensor network (WASN) [1] is a type of
wireless sensor network (WSN) [2, 3] whose sensor devices
are microphones. It is a cheap, flexible and efficient solu-
tion that is generally used for monitoring acoustic fields. A
network contains acoustic nodes, which are commonly com-
posed of one or more microphones used to collect signals and
a processor with some kind of communication and compu-
tation capability. The way the signals are processed in each
node depends on the network topology [4].

Some applications that make use of a WASN are presented
in [5] and the references therein. There, the acoustics nodes
are usually used to record signals through microphones, pro-
cess them and even share the signals or some local and net-
work parameters. However, in some applications like Active
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Noise Control (ANC), the nodes have to act on their own envi-
ronment. To this end, the nodes own loudspeakers. ANC sys-
tems [6] are based on the principle of destructive interference
between a disturbance sound field called primary noise and
a secondary sound field generated by controlled secondary
sources called actuators. The target is to cancel, or at least
minimize, the primary noise signal. To cancel the primary
noise, the ANC system commonly uses adaptive algorithms
to generate the secondary sound field from a reference signal
that is correlated with the primary noise. For this purpose, the
noise is monitored at a specific spatial area by a sensor called
error sensor. Therefore, cancelation is only carried out at that
specific spatial point and also at a quiet zone around the error
sensor. ANC systems can be extended to multichannel ANC
systems by overlapping different controlled areas and setting
multiple secondary sources [7]. The multichannel ANC sys-
tems can be divided into a network with smaller multichannel
nodes or single-channel nodes. Figure 1 illustrates it.

This paper presents an ANC system working over a dis-
tributed network with an incremental approach in a ring topol-
ogy [8]. The ANC system is based on the well known filtered-
x Least Mean Square (FxLMS) algorithm [9]. The goal is to
minimize the sum of the power of the error sensors. In [10], a
distributed ANC system based on the Me-FxLMS algorithm
was presented in time domain with a sample-by-sample ac-
quisition. However, most of the audio cards work with block-
data buffers in practical scenarios. Moreover, a block-based
implementation of the FxLMS is more efficient in the fre-
quency domain. On the other hand, if the block size is larger
than the adaptive filter, it has to be partitioned. All these rea-
sons have led to the use of the Frequency Partitioned Block
Filtered-x LMS (FPBFxLMS) algorithm [11]. Hence, the ap-
proach presented in this paper is a distributed ANC system
based on the FPBFxLMS algorithm.

The paper is organized as follows: section 2 presents the
FPBFxLMS algorithm for a single-channel node and extends
it to a distributed ANC system of N nodes. Section 3 analyzes
some implementation aspects, while the section 4 and section
5 are devoted to results and conclusions, respectively.

2. DESCRIPTION OF THE ALGORITHM

In [11], the FPBFxLMS algorithm was presented for a generic
centralized ANC system with I reference signals, J sec-

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 310



ADAPTIVE
CONTROLLER 

.

.

.

s11(n)

3

2

11

s12(n)

s2K(n)

sJK(n)

s1K(n)

s13(n)

J

K

2

INPUT BUFFERS

OUTPUT 
BUFFERS

 noise  
source 

(a)

NODE 1

2

11

N
N

2

NODE 2

NODE N

C
O
M
M
U
N
I
C
A
T
I
O
N

N
E
T
W
O
R
K

 noise  

source 

e
1
[n]

e
2
[n]

e
N
[n]

y
1
[n]

y
2
[n]

y
N
[n]

x[n]

x[n]

x[n]

(b)

Fig. 1. Schemes of (a) a centralized ANC system, (b) a distributed ANC system with single-channel nodes.

I Number of reference signals J Number of secondary sources (actuators)
K Number of error signals (monitoring sensors) B Block size
L Length of the adaptive filters F L/B, number of partitions of the adaptive filters
M Length of the FIR filters that model the acoustic paths P M/B, number of partitions of the estimated acoustic paths
sjk M-length estimation of the acoustic path that links the jth secondary source with the kth monitoring sensor
Sjkp FFT of size 2B of the pth partition of the acoustic path sjk

w[n] Coefficients of the adaptive filter of length L during the nth block iteration
W[n]f FFT of size 2B of the f th partition of the coefficients of the adaptive filter w during the nth block iteration

Table 1. Notation of the description of the algorithms

ondary sources, and K error sensors (I:J :K configuration).
Here, we derive the centralized FPBFxLMS algorithm pre-
sented in [11] to a distributed ANC system using a ring topol-
ogy with an incremental approach. The ring topology with
an incremental approach means that the nodes collaborate by
transmitting information to an adjacent node in a consecutive
order. For the sake of simplicity, we consider one disturbance
noise (I=1) and single-channel nodes (J=K=1). Therefore,
each node is composed of a processor, a microphone and a
loudspeaker. For a better understanding, the FPBFxLMS is
first adapted to a single channel node, and then, it is extended
to a network with N nodes.

2.1. The FPBFxLMS for a single-channel node

The algorithm processes samples by blocks of size B. L is
the length of the adaptive filter w, and M is the length of the
FIR filters that model the estimated secondary paths s. If L
and M are larger than B, both w and s are partitioned into
F and P partitions, respectively. Thus, the superscript of the
following notation denotes the number of partition, and the
index between brackets denotes the block iteration. The nota-
tion in Table 1 is used to describe the algorithm. According to
the notation, the adaptive filter output is calculated as follows

Y[n] =
∑F

f=1
Wf [n] ◦X[n− f + 1], (1)

where X[n] = FFT{[xB[n − 1] xB [n]]}, and xB[n] =
[x(Bn) x(Bn− 1) . . . x(Bn−B +1)]. Vector Wf [n]
is the FFT of size 2B of the f th partition of w at the nth block
iteration, and ◦ denotes the element-wise product of two vec-
tors. The valid samples of the adaptive filter output yB [n] are
the last B samples of IFFT{Y[n]}.

The filter coefficients are updated in the frequency domain
by calculating the correlations between the reference signal
(X[n]) that is filtered through the estimated secondary path
(Sp), V[n], and the error signal, eB [n]. To this end, the fol-
lowing operations are performed

V[n] =
∑P

p=1
Sp ◦X[n− p+ 1], (2)

µ̃f [n] = E[n] ◦V[n− f + 1]
∗
, (3)

where
E[n] = FFT[0B eB[n]]. (4)

The update of the coefficients of each partition of the adaptive
filter at the nth block iteration is calculated as follows

Wf [n+ 1] = Wf [n]− µFFT{[ϕf [n] 0B ]}, (5)

where µ is the step-size parameter, and the vector ϕf [n] cor-
responds to the first B samples of the 2B-IFFT of the partition
µ̃f [n]

IFFT{µ̃f [n]} = [ϕf [n] ϕ̄
f
[n]]. (6)

Equations (3)-(6) are performed for each partition (f=1,...,F ).

2.2. The FPBFxLMS for a distributed ANC system

The proposed distributed ANC system is composed of N
single-channel nodes, and therefore, N error sensors and N
secondary sources. Now, there exists a global state network,
which is defined by N adaptive filters, one of each node. The
global network adaptive filter, W[n], can be defined as

W[n] = [W1[n],W2[n], . . . ,WN [n]], (7)
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Wk[n] = [W1
k[n],W

2
k[n], . . . ,W

F
k [n]], (8)

where W[n] is a [2B × FN ] matrix composed of the con-
catenation of the adaptive filter of each node. Matrix Wk[n]
of size [2B × F ] is the adaptive filter of the kth node, and
vector Wf

k [n] of size 2B, is the f th partition of the adaptive
filter in frequency domain of the kth node. For calculating the
output signal, each node takes its filters from the global fil-
ters when they are completely adapted. Hence, the kth node
uses WN [n](:,1+(k−1)F :kF ) to calculate its output signal like
in (1). Moreover, we define

Vk[n] = [V1k[n],V2k[n], . . . ,VNk[n]], (9)

where Vk[n] is a matrix of size [2B × FN ] of the kth node.
It is composed of the concatenation of the reference signal
filtered through all the secondary paths that links the jth loud-
speaker with the kth microphone (Sjk for j = 1, . . . , N ).
Each node knows the estimation of the secondary paths that
links all the loudspeakers of the other nodes with its sen-
sor. This means that the kth node knows vectors Sjk for
j = 1, . . . , N . Matrix Vjk[n] of size [2B × F ] is calculated
as stated in (2) for each secondary path and each partition

Vjk[n] = [Vj1k[n],Vj2k[n], . . . ,VjFk [n]]. (10)

Furthermore, each node takes its error signal from its sensor
to form its error vector as in (4). Then, each node replicates
its error vector FN times forming the matrix Ek[n] of size
[2B × FN ]. Equation (3) is redefined for the kth node as

µ̃
k
[n] = Ek[n] ◦Vk[n]

∗
. (11)

Matrix µ̃
k
[n] of size [2B × FN ] is used at each node to cal-

culate the adaptation matrix of the node, Ψk[n], as

IFFT{µ̃
k
[n]} = [ϕ

k
[n] ϕ̄

k
[n]], (12)

Ψk[n] = FFT{[ϕ
k
[n] ; 0[B×FN ]]} (13)

where ϕ
k
[n] and 0[B×FN ] are matrices of size [B × FN ].

Moreover, the operators FFT and IFFT perform direct and
inverse fast fourier transforms of size 2B of each column of
the matrices involved. Finally, each node calculates its own
estimate of the global adaptive filters using the global estimate
of the previous node, and its own adaptation matrix Ψk[n].
The global adaptive filters are adapted at the kth node as

Wk[n+ 1] = Wk−1[n]− µΨk[n]. (14)

Once all the nodes have finished the actualization of the fil-
ters, the global updated vector WN [n] is disseminated to the
rest of the nodes for the next iteration. Moreover, note that
W0[n] = WN [n− 1].

3. IMPLEMENTATION ASPECTS

The sampling rate (fs) and the block size (B) are two impor-
tant parameters when thinking about a real-time implementa-
tion of a distributed ANC system. B describes the number

of transferred discrete-time samples per iteration and thereby
determines the latency of the algorithm. The latency is the
time spent from when the input-data buffer is filled up until
this data buffer is processed and sent back to the output-data
buffer. We refer to the time spent to fill up the input-data
buffers as tbuff , and is defined as B/fs. The choice of these
parameters is crucial for the performance of the system be-
cause there are two conditions that must be satisfied:
• The real-time condition. The application works in real

time if tproc < tbuff , where tproc is the execution delay.
In a centralized ANC system tproc is the processing delay
of the algorithm. In a distributed ANC system, it also in-
cludes the delays of transmitting the global network state
between the nodes. However, each node process the al-
gorithm simultaneously except the addition of the global
network state of the previous node. Moreover, as we con-
sider single-channel nodes, each node has to process less
operations than a multichannel centralized system.

• The causality condition. The algorithm has to satisfy the
condition tbuff + τs < τn [12], where τs is the maxi-
mum delay of the secondary paths that join the actuators
with the error sensors, and τn is the minimum delay of
the paths that join the noise source with the error sensors.
This condition guarantees the causality of the system.
It is obvious that the time tproc increases with the num-

ber of nodes. If the time tproc increases, the time tbuff must
increase in order to satisfy the real-time condition. It means
that, with a fixed fs, the block size must be increased. Sec-
tion 4.1 will show that when B increases, the convergence
performance of the algorithm gets worse, until the causality
condition is no longer satisfied. Therefore, it seems that some
kind of trade off between these parameters must be consid-
ered in order to satisfy both conditions.

4. RESULTS

Some experiments were performed to validate the distributed
ANC system. In a first stage, both the noise reduction and the
convergence performance of the distributed ANC system are
evaluated and compared with the centralized ANC system. In
a second stage, we evaluate and compare the computational
complexity of both ANC systems.

4.1. Simulation Results

In this section, some simulation results are presented to val-
idate the performance of the FPBFxLMS algorithm in a
distributed network with a ring topology and an incremental
approach. The simulations have been carried out using real
acoustic channels between microphones and loudspeakers
sampled at 2kHz. This channels have been measured in a
listening room. Some examples of the impulse responses of
this listening room are available at [13]. We have considered
a zero-mean Gaussian random noise with unit variance as the
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Fig. 2. Noise reduction of the distributed system with 4 single-
channel nodes and the centralized system with a 1:4:4 config-
uration represented for the best and worst microphone.

disturbance noise. Furthermore, a block-size of B = 512 and
a filter length of L = 1024 have been considered. This means
that two partitions are carried out. In order to evaluate the
performance of the algorithm, we define the instantaneous
Noise Reduction ratio at the kth node as

NRk[n] = 10 log10

(
e2k[n]

d2k[n]

)
, (15)

where ek[n] and dk[n] are the signals measured at the kth mi-
crophone with and without the ANC operation, respectively.
Moreover, the power of these signals have been estimated us-
ing an exponential windowing.

First, we compare the noise reduction of a square central-
ized ANC system with a 1:4:4 configuration and a distributed
ANC system with 4 single channel nodes. Fig.2 shows the
noise reduction of both the centralized and the distributed im-
plementations of the FPBFxLMS algorithm. Fig.2 illustrates
the results for the microphone with best and worst perfor-
mance in the centralized implementation, and the node with
the best and worst performance in the distributed implementa-
tion. As expected, the distributed implementation has exactly
the same results than the centralized implementation in terms
of convergence speed and final residual noise.

Another important property related with the causality con-
dition is the stability limit. In the literature, some contri-
butions have studied the convergence behavior of the block
filtered-x LMS algorithm (BFxLMS). In [14], the maximum
µ parameter that leads to the fastest convergence rate was de-
rived as

0 ≤ µ <
1

Bλmax
(16)

where λmax is the maximum eigenvalue of the filtered ref-
erence signal autocorrelation matrix Rvv defined as Rvv =
E[VVT ]. Therefore, the convergence performance of the al-
gorithm depends on the statistics of the reference signal, the
acoustic paths, and the block length B. For the same refer-
ence signal, the step-size parameter µ depends on B, so the
maximum µ value increases by reducing the size of B, and,
consequently, the convergence speed is improved by reduc-
ing B. However, as commented in section 3, the size of B
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Fig. 3. Noise reduction of the distributed algorithm for differ-
ent size of B.

Generic N=1 N=4 N=8

MUX 4LN + 4LN2 8L 80L 288L

(1) ADD LN + 3LN2 4L 52L 200L

FFTs 2 + 6N 8 26 50

MUX 2L+ 6LN 8L 26L 50L

(2) ADD L+ 3LN 4L 13L 25L

FFTs 3 + 5N 8 23 43

Table 2. Total number of multiplications (MUX), additions
(ADD), and FFTs per iteration of the implementation of the
FPBFxLMS algorithm in (1) a centralized ANC system and
(2) a distributed ANC system.

is also limited by the real-time condition. Therefore, there is
a minimum value of B for a given configuration that assures
the real-time condition and maximum convergence speed.

Fig. 3 illustrates the convergence behavior of the worst
node in a distributed network of four nodes when the size of
B changes between 256 and 2048. As expected, it shows
that the algorithms converge faster with a smaller block size,
B. As these results show, the maximum µ is more or less
doubled when B is halved. This fact can be explained from
(16), where, for the same reference signal, the maximum µ is
doubled by reducing the size of B by half.

4.2. Computational complexity

Table 2 compares the computational complexity in terms
of multiplications, additions, and FFTs per iteration of the
FPBFxLMS algorithm implemented for a centralized and
a distributed ANC system. For the centralized implemen-
tation, we consider a multichannel ANC system with one
disturbance noise and the same number (N ) of microphones
and loudspeakers (1:N :N configuration). For the distributed
implementation, we consider a network of N single-channel
nodes. However, we only compute the operations of one
single-channel node because each node could perform all
the operations independently, except the last addition of the
global adaptive filters calculated by the previous node. Since
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we use a value of M = L, and B = L/2 (two partitions) the
computational complexity only depends on L and N .

First, the third column of table 2 shows the computational
complexity of both algorithms related to L and N . Then, the
computational complexity is particularized for N = 1, N = 4
and N = 8. As expected, when N = 1, both implemen-
tations make the same operations. This is because both the
distributed and the centralized ANC system become a single-
channel system. When N = 4, we compare the operations
of the centralized ANC system with a 1:4:4 configuration (16
channels) with the operations of a single-channel node of a
network of 4 nodes. The same is done for N = 8. Results
show that in a centralized ANC system, the computational
complexity increases significatively with the number of chan-
nels. This fact constitute a bottleneck in massive multichannel
ANC systems. Otherwise, the increase of computational com-
plexity at each node in a distributed ANC system is not so sig-
nificant. However, in a distributed ANC system we also have
to consider the delay in transmitting the global network filters
between nodes. This involves the transmission of 2L × N
coefficients between N nodes. As the transmission of data is
done in an incremental mode, there are (N−1) transmissions
in each direction. Therefore, each iteration, 2L × N coeffi-
cients are transmitted 2(N − 1) times. This fact implies that
the transmission speed of the network has to be considered.

5. CONCLUSIONS

An scalable and versatile distributed implementation of the
FPBFxLMS algorithm for an ANC system using an incre-
mental strategy in the network has been presented. It has
been demonstrated that the proposed algorithm has the same
performance than the centralized version when there are no
communication constraints in the network. Moreover, some
implementation aspects have been studied regarding the block
size of the algorithm. In a real implementation, the value of B
has to be chosen to satisfy both the real-time and the causality
conditions. On the one hand, if B increases, the system has
more time for processing, allowing a better exchange of in-
formation between nodes or the possibility to add more nodes
to extend the quite zone. On the other hand, if B decreases, it
has been proved that the algorithm converges faster.

Moreover, the computational complexity of the dis-
tributed algorithm has been studied and compared with the
centralized version. Since in the distributed algorithm, each
node can perform almost all the operations independently,
the computational complexity is significantly reduced at each
node. However, in a real implementation, the time used to
transfer the network information between nodes would has
to be considered. Therefore, in practical implementations, a
trade-off between some aspects of the implementation like
the size of B, the number of nodes (N ), and the network data
transfer rate have to be considered.
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