
A NONPARAMETRIC CUMULATIVE SUM SCHEME BASED ON SEQUENTIAL RANKS
AND ADAPTIVE CONTROL LIMITS

Michael Lang and Abdelhak M. Zoubir

Technische Universität Darmstadt, Germany
Signal Processing Group, 64283 Darmstadt, and

Graduate School of Computational Engineering, 64293 Darmstadt
{mlang , zoubir}@spg.tu-darmstadt.de

ABSTRACT

We consider the problem of quickest detection, i.e. we sequentially

monitor a data sequence to detect a shift in the sampling distribution

which may occur at an unknown time instance. Conventional quick-

est detection procedures typically require a-priori knowledge of the

underlying pre- and post-change distributions of the process. Such

knowledge may not be available in practice or be flawed, e.g. be-

cause the distributional assumptions itself or the respective parame-

ter estimates are inadequate. In this paper we propose a distribution-

free cumulative sum (CUSUM) procedure based on sequential ranks

and adaptive control limits. The presented procedure does not re-

quire a historical set of training data and is therefore especially suited

for initial monitoring phases.

Index Terms— Quickest Detection, Nonparametric, Sequential

Ranks, Cumulative Sums

1. INTRODUCTION

Originating from an industrial statistics background, statistical pro-

cess control (SPC) techniques such as Page’s Cumulative Sum charts

(CUSUM) [1] have found their way into numerous application areas

other than quality monitoring in manufacturing lines. In fact, the

need to quickly detect changes in the sampling distribution is en-

countered in virtually every discipline that relies on data processing,

well known examples being engineering, economics, medicine and

science. Essential to the usefulness of such techniques in practice

is often that they be robust to flaws in the underlying distributional

assumptions or inaccurate model parameter estimates.

In this paper the focus is on distribution-free CUSUM control

charts. We propose a distribution-free CUSUM based on a sequential

ranks test statistic and a sequence of adaptive control limits. Since no

historical training data is required our procedure is especially useful

in initial monitoring phases, where one may collect observations in

order to construct a more powerful detection scheme to then use in

the monitoring of following observations.

The remainder of this paper is organized as follows. In Section

2 the univariate sequential change detection problem and the con-

ventional CUSUM are introduced, followed by a discussion of two

nonparametric approaches in Section 3. Our proposed method is

described in Section 4 while simulation and real data results are pre-

sented in Section 5 and Section 6, respectively. Section 7 completes

this paper with a discussion.
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2. PROBLEM FORMULATION AND CUSUM CONTROL

CHARTS

Consider an observed sequence {x (n) , n ≥ 1} of independent ran-

dom variables such that {x (1) , . . . , x (τ − 1)} ∼ F and

{x (τ ) , x (τ + 1) , . . . } ∼ G, i.e. a distributional shift F → G oc-

curs at time instance τ . In this paper we will monitor {x (n)} for a

shift from F to a stochastically larger distribution G.

If we were to assume both F and G to be normally distributed

with known parameters, Page’s CUSUM [1] can be regarded as the

standard change detection technique and can be computed sequen-

tially as

CC (0) = 0, CC (n) = max{0, CC (n− 1)+x (n)−kC}, n ≥ 1
(1)

A distributional shift is declared if CC (n) > hC, with hC and kC

being the pre-specified control limit and reference constant, respec-

tively. Hereby, hC and kC are chosen such that a nominal in-control

average run length (ARL) ARL0 is attained, cf. [2]. The in-control

ARL is defined as the expected time until a change is signaled under

F , i.e.

ARL = EF inf{n > 0 : CC (n) > hC}. (2)

Intuitively this can be thought of as the equivalent of setting a nom-

inal type-I error level in hypothesis testing. The closeness of the

actual in-control ARL to ARL0 can be regarded as an indicator of

the CUSUM chart’s robustness [3]. It is well known that, under some

regularity conditions, choosing kC = δ/2, with δ being the shift in

the transition F → G, is optimal [4].

3. NONPARAMETRIC APPROACHES

Optimality of the conventional CUSUM comes at the price of a con-

siderable required a-priori knowledge concerning the process distri-

bution. CUSUM’s sensitivity to deviations from the assumption that

both F and G are normally distributed with known parameters is

well documented [5, 3]. Various nonparametric change-point proce-

dures have been proposed in the literature, yet the topic appears to

be less well explored than parametric counterparts. Nonparametric

adaptations of Page’s CUSUM usually involve sign or rank statis-

tics. For a thorough overview of the existing literature we refer to

[6, 7]. Without claiming to have provided a complete and exhaustive

representation of the field we would like to point to relevant contri-

butions by Gordon and Pollak. In [8] the said authors proposed a

Shiryaev-Roberts (SR) procedure wherein a finite sequence of like-

lihood ratios (LR) of sequential vectors of signs and ranks takes the

place of the LRs in the parametric SR procedure.
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In the following subsections we introduce two nonparametric

procedures: a Bootstrap-Aided CUSUM (BAC) using a sequence of

control limits instead of a fixed threshold, as introduced by Chat-

terjee and Qiu [3], and McDonald’s Sequential Ranks CUSUM [9]

(SRC).

3.1. Sequential Ranks CUSUM (SRC)

The sequential rank of x (n) is defined as

R (n) = 1 +

n−1
∑

j=1

(x (n)− x (j))+ (3)

where (x)+ is 1 for x > 0 and 0 otherwise. The SRC is then

CSRC (n) = max{0, CSRC (n− 1) +
R (n)

n+ 1
− kSRC}, n ≥ 1 (4)

with CSRC (0) = 0 and kSRC again being the reference constant. The

SRC signals a change if CSRC (n) exceeds a predetermined control

limit hSRC.

It can be shown [9] that, given the observed process is in-control,

the quantities
R(n)
n+1

are independent and discrete uniform on

{
1

n+ 1
,

2

n+ 1
, · · · ,

n

n+ 1
}

Herein lies a key advantage of the SRC. In fact, for a fixed refer-

ence value kSRC we can obtain the control limit hSRC and thus con-

struct the sequential ranks CUSUM as follows without any histor-

ical training data being required. Set a constant NSRC, then con-

struct the set of random variables {U (n)}NSRC
n=1 as discrete uniform

on { 1
n+1

, 2
n+1

, · · · , n
n+1

} and construct

C̃SRC (n) = max{0, C̃SRC (n− 1) + U (n)− kSRC} (5)

Extract the maximum value of {C̃SRC (n)}NSRC
n=1 and repeat the above

steps B times. Finally, set the control limit hSRC as the B · (1 −
ARL0

−1) ordered extracted maximum value.

3.2. Bootstrap-Aided CUSUM (BAC)

Chatterjee and Qiu [3] proposed a nonparametric CUSUM where

instead of a fixed decision interval a sequence of control limits, de-

termined by the bootstrap estimate of the conditional distribution of

the CUSUM test statistic given the last time it was zero, is used.

Starting from the conventional CUSUM formulation as in Eq.

(1)

CBAC (n) = max{0, CBAC (n− 1) + x (n) − kBAC}, n ≥ 1 (6)

with CBAC (0) = 0 we define the sprint length TBAC (n), to express

the time elapsed since CBAC (n) was last zero.

TBAC (n) = 0 if CBAC (n) = 0

TBAC (n) = j if CBAC (n) 6= 0, . . . , CBAC (n− j + 1) 6= 0,

CBAC (n− j) = 0; j = 1, 2, . . . , n

Furthermore, let us denote by YBACj
a random variable with distri-

bution [CBAC (n) |TBAC (n) = j],

YBACj
∼ [CBAC (n) |TBAC (n) = j] (7)

It can be shown that, as opposed to the unconditional distribution of

CBAC (n), the conditional distributions [CBAC (n) |TBAC (n) = j] are

easier to handle and under some regularity conditions depend only

on j and F , but not on n [3]. Then, for any positive integer jmax ≤ n,

the distribution of CBAC (n) can be expressed as

CBAC(n) ∼

jmax
∑

j=1

YBACj
ITBAC(n)=j + Y ∗

BACITBAC(n)>jmax
(8)

Y ∗
BAC ∼ CBAC(n)|TBAC (n) > jmax (9)

Chatterjee and Qiu argue that, instead of a single control limit

hBAC, one may construct a sequence of control limits {hBACj
}jmax

j=1

based on the distribution of YBACj
. To limit computational complex-

ity, control limits are calculated up to a reasonably small value jmax

after which the control limit is kept fixed at its last value hBACjmax
.

Prior to determining the sequence of control limits {hBACj
}jmax

j=1

we have to set kBAC and jmax. The latter is essentially chosen ac-

cording to the available computational power. With no knowledge

regarding the shift δ (cf. Section 2), kBAC should be calibrated ac-

cording to the average sprint length E TBAC (cf. [3] for a detailed

discussion). Note that an increase of kBAC increases the probability

that CBAC (n) = 0, thus yielding a smaller E TBAC. Vice versa, a

smaller kBAC diminishes the chances of the test statistic to hit the

lower bound 0, thereby increasing the average sprint length. Clearly

the agility of the detection procedure can be influenced by appropri-

ately calibrating kBAC as follows: set an initial value kBAC0
and draw

a number B1 of bootstrap samples from the historical training data.

Then run the BAC on each of these bootstrap samples and save the

time index when CBAC first bounces back to zero. Take the mean of

the so obtained B1 sprint lengths as the average sprint length and

repeat the above steps in a binary search algorithm until the average

sprint length is close enough to the desired value, e.g. ⌊ 3jmax

4
⌋.

Having set kBAC and jmax , {hBACj
}jmax

j=1
is determined as follows

• for each j ∈ {1, . . . , jmax}

– Initialization: C∗
old = 0, T ∗

old = 0, b = 0

– Step 0: set b = b+ 1;

– Step 1: draw a bootstrap sample X∗ from X .

– Step 2: update C∗
new = max{C∗

old + X∗ − k, 0}
and set T ∗

new = T ∗
old + 1 if C∗

new > 0
and T ∗

new = 0 if C∗
new = 0.

– Step 3: if Tnew = j record YBACj:b
= C∗

new and

return to step 0 if b < B
else update C∗ and T ∗ and return to step 1

• once the above steps are performed we end up with B
numbers YBACj:1

, YBACj:2
, . . . , YBACj:B

• take the B(1 − ARL0
−1) ordered value of

YBACj:1
, YBACj:2

, . . . , YBACj:B
as control limit hBACj

• set hBACj
= hBACjmax

for j > jmax

Then, the BAC chart signals if

TBAC (n) = j and CBAC (n) > hBACj
for 1 ≤ j ≤ jmax

TBAC (n) > jmax and CBAC (n) > hBACjmax
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As a final step, we subject the obtained control limits {hBACj
}jmax

j=1
to

a further fine-tuning using a binary search algorithm, wherein simi-

larly to the empirical calibration of kBAC we run the procedure on B1

bootstrap resamples of the training data and fine tune our sequence

of control limits such that the actual ARL is close enough to the

nominal counterpart ARL0.

The advantage of having an adaptive threshold depending on the

elapsed time since CBAC (n) last bounced back to 0 is illustrated in

Figure 1 where we chose kBAC = kC, i.e. we did not empirically

calibrate kBAC, yielding the special case CBAC (n) = CC (n). The

tracking statistic of both CUSUMs is represented by the solid line

(C{BAC,C}) whereas the respective control limit(s) are depicted by

dashed (hBAC) and dash dotted (hC) line. In this example, a positive

shift in the mean occurs at time instance 50.
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Fig. 1. adaptive (hBAC) vs. fixed (hC) control limit

4. THE PROPOSED METHOD (AC-SRC)

We propose merging the SRC and BAC and - before formally intro-

ducing it - would like give the reasoning behind it. It turns out that

the BAC is a powerful and and highly tunable procedure with the

caveat however that this is only true if it has been well adjusted to

the particular problem at hand. The latter requires a reasonably large

set of training data and computationally expensive refinements. This

is not the case for the SRC. In fact, setting up the SRC requires nei-

ther training data nor is the algorithm to get hSRC for an arbitrarily

fixed kSRC computationally expensive. This leads us to strongly rec-

ommend the SRC as a control chart for startup use.

A simple concatenation of SRC and BAC, i.e. use the SRC while

training data is gathered (thereby checking that the training data we

accumulate is indeed in-control) and the BAC is being calibrated,

seems both appealing and intuitive. While such a combination is

feasible and makes sense (the alternative would be to just require by

definition that the historical data collected be in-control, as is often

done and as a matter of fact has been done by Chatterjee as well),

problems arise if very early in the process of collecting the allegedly

in-control training data there were an abrupt change.

Whilst we recommend use of the SRC in a start-up phase, we

argue that it first needs to be revised in order to reduce (at least to

some degree) its inadequate performance given that a change occurs

soon after SRC monitoring begins. The aim of the detection scheme

we present in the following is meant to address exactly this issue.

We propose a combination of SRC and BAC wherein we use

control limits {hAC-SRCj
}jmax

j=1
obtained from

YAC-SRCj
∼

[

C̃AC-SRC (n) |TAC-SRC (n) = j
]

(10)

similar to the algorithm described in Section 3.2 (in that here we re-

peatedly generate {U (n)}NAC-SRC
n=1 instead of bootstrapping historical

data). C̃AC-SRC (n) is defined analogously to Eq. (5).

As we suggest this CUSUM scheme to be used while the actual

BAC is collecting training data and being computed, we will design

it with a relatively short ARL0 (i.e. smaller than the amount of train-

ing data we want to collect for the BAC) and set kAC-SRC such that the

average sprint lengths will be small too (cf. Section 3.2) in order to

obtain a more agile detection scheme. Keep in mind that, even with

perfectly in-control data, every CUSUM chart will eventually signal

a change. Therefore, since we design with a relatively small ARL0

to begin with, it’s crucial that when collecting long training data sets

we restart our procedure periodically (if no change was signaled),

e.g. after having collected observations in the range of say ⌊ARL0

2
⌋

to ⌊ 3·ARL0

4
⌋.

5. SIMULATION RESULTS

In this section we present results of simulations we carried out in or-

der to assess the detection delay (DD) and the ARL. We interpret the

closeness of the actual ARL to ARL0 as a measure of robustness.

We applied the above mentioned CUSUM schemes to Nph2 = 500
samples of a process, where at time τ = 20 the distribution shifts

from F ∼ N(0, 1) 7−→ G ∼ N(1, 1). For the conventional

CUSUM we chose kC = 0.5 and hC = 3.5. For the SRC we

used kSRC = 0.642 and hSRC = 1, as recommended by McDonald

[9] if ARL0 = 200. All presented CUSUM charts were designed

with a nominal ARL0 = 200 in mind. Results were averaged over

1000 Monte-Carlo runs. Furthermore, for the BAC and AC-SRC we

set jmax = 8 and empirically determined the respective k such that

ETn = 6. N = 1000 training data samples were assumed available,

similarly we set NAC-SRC = NSRC = 1000, B = 1000, B1 = 100.

To examine robustness we contaminated our observations us-

ing a two-term Gaussian Mixture Model. For Table 2 we contam-

inated our data using a two-term Gaussian mixture model, i.e. our

in-control distribution can be expressed as

f = (1− η)N (0, 1) + ηN (0, κ) (11)

with 0 ≤ η ≤ 1 being the mixture probability. We used a mixing

probability of η = 0.2 and κ = 100.

We start by focusing on Table 1 which displays DD and the

actual in-control ARL for the conventional parametric CUSUM

(C), McDonald’s sequential ranks CUSUM (SRC), Chatterjee’s

bootstrap-based CUSUM (BAC) and our proposed scheme (AC-

SRC).

C SRC AC-SRC BAC

DD 5.8266 29.7385 14.9470 6.8212

ARL 196.3780 268.6330 246.6070 224.9200

Table 1. no contamination

As was to be expected, under the ideal scenario F ∼ N(0, 1) 7→
G ∼ N(1, 1) with kC = 0.5, C clearly outperforms its competitors

yielding the smallest detection delay as well as an ARL that is closest

to the nominal ARL0 = 200. Note that the BAC yielded a detection

delay that compares very favorably to the one attained by C. As for

the ARL, the average run length attained by the BAC is close enough

to ARL0 and consistent with the margins of error we allowed for it

in the fine-tuning of {hBACj
}jmax

j=1
(cf. Section 3.2). Focusing on the

SRC’s DD its aforementioned poor performance for small τ (here
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τ = 20) becomes evident. Comparing the SRC with our proposed

method AC-SRC we point out that AC-SRC performed significantly

better with respect to both DD and ARL.

C SRC AC-SRC BAC

DD 3.8678 112.1189 67.5657 21.6258

ARL 11.6310 243.0950 219.5240 225.4710

Table 2. 20% contamination

We now focus on Table 2 to discuss the impact of deliberately

injected noise. Obviously the closer a respective result is to its coun-

terpart in Table 1 the better. The impact the deviation from its distri-

butional assumptions has for C is evident and devastating - C breaks

down. This however comes as no surprise. It’s worth re-emphasizing

that the ARL expresses the average time elapsed before the monitor-

ing scheme to yields a false-positive. Note that C in the scenario

considered in Table 2 on average signals after about 12 observations

as opposed to the aspired ARL0 = 200. As for BAC, SRC and

AC-SRC we note that qualitatively the assertions with regard to Ta-

ble 1. hold for Table 2. as well, a finding that is consistent with the

distribution-free nature of BAC, SRC, and AC-SRC.

6. APPLICATION EXAMPLE: C. TRACHOMATIS

INFECTIONS IN THE U.K.

Chlamydia trachomatis infections have been recognized as the most

prevalent sexually transmitted infection (STI) both in industrialized

and developing countries and are a common cause of urethritis, cer-

vicitis, conjunctivitis etc., cf. [10] and references therein for a de-

tailed (medical) discussion of the topic.

Figure 2 shows the annual incidence rate of Chlamydia infec-

tions per 100,000 population for the U.K. in the years 1988-2012

(no data for 2011) [11].
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Fig. 2. incidence rate per 100,000 population

SPC techniques are widely used for infectious disease monitor-

ing [12]. In the following we will apply the SRC and AC-SRC to the

incidence data as illustrated in Figure 2. Note that for the particular

real-world problem at hand we assume our knowledge is limited to

the sequential observation of the incidences in Fig. 2. An immediate

implication then is that, since we stipulate to have no knowledge of

and make no distributional assumptions about the specific infectious

disease being monitored and have no historical disease data either, it

follows that C and BAC as they were presented here are not suitable

to the problem under investigation.

We assume an expert epidemiologist to have determined (retro-

spectively, e.g. to validate our findings) through visual inspection

that a signal should be raised at the 10th sample, i.e. 1997. Note that

the question of what a (communicable disease) outbreak is and when

exactly an alarm should be raised is not well settled and retrospec-

tive visual analysis of the data by an expert epidemiologist is com-

mon practice [13]. We acknowledge that our hypothetical expert’s

choice is somewhat arbitrary (there is however a clear trend starting

around 1996), however necessary for the sake of algorithm compar-

ison. We apply the SRC and the AC-SRC to the given data. We set

ARL0 = 30, NSRC = 100, kSRC = 0.5, B = 1000, B1 = 100,

jmax = 6, ETn = 4 and determine hSRC and {hAC-SRCj
}jmax

j=1
as out-

lined in Section 3.1 and Section 4, averaging over 1000 Monte-Carlo

runs. Results are shown in Table 3.

SRC AC-SRC

DD 13 1

ARL 396.4871 30.2510

Table 3. SRC vs. AC-SRC for the Chlamydia data

This application example, firstly, makes a strong and vivid case

for the importance of methods that fit well into challenging real-

world scenarios and are able to cope with respective implications

adequately rather than by imposing various modeling assumptions

or requirements that tend to contradict reality. Secondly, following

up on our discussion in Section 5, we point out the remarkable im-

provement our proposed method AC-SRC is able to attain compared

to the SRC. In fact, on average the AC-SRC signals at year 1998,

i.e. with a detection delay of 1 observations as opposed to an aver-

age detection delay of 13 for the SRC. Besides the improvement in

performance, it should be noted that AC-SRC, as opposed to SRC,

allows for better and easier control of performance characteristics.

In fact, while AC-SRC enables a relatively easy and precise control

of the actual ARL, this is not true for the SRC (cf. [9]).

7. DISCUSSION

We proposed a distribution-free CUSUM procedure based on se-

quential ranks and adaptive control limits, which does not require

training data and is therefore especially suited for initial monitoring

phases. In our simulations the BAC outperformed nonparametric

competitors. This was to be expected since the BAC is known to

perform well, given that a reasonably large amount of training data

is available and that it has been well calibrated. The SRC does not

require historical data and is computationally inexpensive. Perfor-

mance of the SRC is however inadequate if a change occurs soon

after we start monitoring. Furthermore, the SRC exhibits substantial

discrepancies between the actual ARL and ARL0. Results from a

numerical simulation study as well as a real-world application indi-

cate that our proposed procedure is able to successfully tackle these

shortcomings, significantly reducing the detection delay compared

to the SRC and yielding average run lengths close to ARL0. Con-

sistent results were obtained for other values of τ, jmax, ETn, given

that they were relatively small.
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