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ABSTRACT
We develop Bayesian learning algorithms for estimation of
time-varying linear prediction (TVLP) coefficients of speech.
Estimation of TVLP coefficients is a naturally underdeter-
mined problem. We consider sparsity and subspace based
approaches for dealing with the corresponding underde-
termined system. Bayesian learning algorithms are devel-
oped to achieve better estimation performance. Expectation-
maximization (EM) framework is employed to develop the
Bayesian learning algorithms where we use a combined
prior to model a driving noise (glottal signal) that has both
sparse and dense statistical properties. The efficiency of the
Bayesian learning algorithms is shown for synthetic signals
using spectral distortion measure and formant tracking of real
speech signals.

Index Terms— Time-varying linear prediction, sparsity,
Bayesian learning, expectation-maximization.

1. INTRODUCTION

Time-varying linear prediction (TVLP) model [1,2] of speech
signals is a generalization over the much used linear predic-
tion model [3, 4]. In TVLP, each speech signal sample is pre-
dicted by a time-varying linear combination of past samples.
Here, linear combination coefficients are time-varying unlike
the case of standard linear prediction (LP) where the coeffi-
cients are fixed. Hence, for each speech signal frame there are
more TVLP coefficients to estimate and the associated esti-
mation problem becomes underdetermined. To keep the prob-
lem determined (or manageable), a smoothness constraint is
typically imposed on time-varying coefficients. For example,
time-varying coefficients have dynamics that can be modeled
by a linear combination of low-frequency cosine functions,
that means by using a fixed subspace in a known cosine ba-
sis. Several works considered different basis functions, such
as Legendre [5], Fourier [1], discrete prolate spheroidal func-
tions [6], wavelets [7]. For a fixed subspace, a least-squares
based method is predominant to estimate the TVLP coeffi-
cients. Independently of the basis functions used, the method
can be viewed as a subspace estimation method.

In TVLP, a major consideration is modeling the driving

noise. For speech signals, driving noise corresponds to a glot-
tal signal. Typically a glottal signal is either assumed to be
white noise for unvoiced sounds or periodic pulses at pitch
frequency for voiced sounds. Unlike earlier works, we model
the glottal signal as an additive combination of sparse (pulses)
and dense (white noise) noise. Modeling of the glottal signal
by purely sparse noise was recently considered in [8]. The au-
thors in [8] considered an ideal data fit cost, that is, `0-norm
based cost minimization. The practical strategy was to use an
iteratively re-weighted least-squares based algorithm (a de-
terministic solution). In this context, we mention that, for a
standard linear prediction scheme, the use of sparse noise is
considered in [9]. The work of [9] mainly used convex opti-
mization to minimize a `1-norm based data fit cost. Further,
a Bayesian learning algorithm for a standard linear prediction
was recently considered in [10] where a glottal signal was
modeled as a combination of dense noise and block-structured
sparse noise.

In this paper, we begin with the under-determined prob-
lem setup of TVLP and use Bayesian learning for estimation
of the TVLP coefficients. We consider a data driven approach
(no statistical stationarity is assumed) where the driving noise
is modeled by a combination of sparse and dense noise.
Bayesian learning methods are derived using expectation-
maximization (EM) framework. Through simulations, we
have found that the use of sparsity does not lead to a good
performance for the undetermined TVLP problem. There-
fore, we convert the problem to a determined setup using a
fixed subspace. For the determined setup, we show that the
Bayesian learning method provides a better estimate of TVLP
coefficients vis-a-vis competing methods.

2. TIME-VARYING LINEAR PREDICTION SYSTEM

In TVLP, the n’th speech sample xn is modeled as

xn =

P∑
p=1

an(p)xn−p + qn (1)

where P is the order of the predictor and {an(p)}Pp=1 are the
TVLP coefficients at sample n. The term qn is the driving
noise of the generative process model (1) and it is assumed
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to model the glottal signal. In our case, we assume that qn
has two additive parts: the sparse noise en to purely voiced
sounds and the dense noise wn for purely unvoiced sounds.
Both allow us to represent any kind of speech sound. Let us
consider that an N -point sequence of the signal xn is repre-
sented by x vector. Following (1) with qn = en + wn, we
write

x = X̄ā + e + w ∈ RN×1, (2)

where x = [x1, x2, . . . xN ], ā = [a>1 ,a
>
2 , . . . ,a

>
N ]> ∈

RPN×1 is the vector of TVLP coefficients where ai repre-
sents the vocal shape at each time instant, e is the sparse
noise vector and w is the dense noise vector, and finally
X̄ ∈ RN×PN is the data matrix as below

X̄ =


x>1 0 0 . . . 0
0 x>2 0 . . . 0
0 0 x>3 . . . 0
...

...
...

...
...

0 0 0 . . . x>N

 . (3)

Here xn= [xn−1, xn−2, . . . xn−P ]>, and an= [an(1), an(2),
. . . , an(P )]>. Let A ∈ RP×N be formed by the column
vectors an as A = [a1 a2 . . . aN ], and hence vec(A) =
ā. Denoting the k’th row of A by A(k, :) as A(k, :) =
[a1(k) a2(k) . . . aN (k)], we assume that the components of
A(k, :) are slowly varying over n and hence highly cor-
related. The correlation can be exploited by a decorre-
lating orthonormal transform T−1

1 ∈ RN×N in the trans-
form domain T−1

1 A>. Further the correlation between the
components of rows of T−1

1 A> can be exploited by an-
other orthonormal transform T−1

2 ∈ RP×P , and hence the
full transform can be realized as T−1

2 [T−1
1 A>]>. .Using

the relation vec(T2[T−1
1 A>]>) = vec(T−1

2 A[T−1
1 ]>) =

[T−1
1 ⊗T−1

2 ]vec(A) = [T1⊗T2]−1ā = d, we can write (1)
as

x = X̄Td + e + w, (4)

where T , [T1 ⊗ T2] and ⊗ denotes Kronecker product.
In this paper, we use the standard discrete cosine transform
(DCT) II for T−1

1 and identity matrix for T2. Hence T is
known. Note that x is N -dimensional and d is PN dimen-
sional. Therefore, (4) is underdetermined by a factor of P .
Denoting an estimate of d by d̂, we find the estimate of ā by
Td̂. To estimate d we can use two approaches: (1) sparsity
assumption on d, and (2) restrict to the first L coefficients of
d. The first approach is motivated by standard sparse rep-
resentations and compressed sensing. The second approach
fixes in advance the subspace where most of the energy is
concentrated and thus, deals with a determined system (sub-
space based estimation). Denoting the firstL columns of T by
T(L), and correspondingly first L coefficients of d by d(L),
the determined setup is

x = X̄T(L)d(L) + e + w + n, (5)

where n is the noise due to truncation (d to d(L)). We
use P ≤ L ≤ PN . For TVLP, we must need L > P .
Note that, as T1 and T2 are orthonormal matrices, the case
L = P corresponds to a standard linear prediction, that means
∀n, an(p) = a(p).

3. BAYESIAN LEARNING

Using EM framework, we consider Bayesian learning for the
two approaches in the following subsections.

3.1. Underdetermined setup

Here we deal with (4) where both d and e are assumed to
be sparse, and w is dense. To reduce the number of parame-
ters to be estimated as well as exploiting the structure of the
tranform matrix T, we use block sparsity in d. Let d com-
prise K-dimensional sub-vectors di such that PN

K is an in-
teger. For Bayesian learning, we use the following Gaussian
prior to promote block sparsity in d

d ∼
PN
K∏
i=1

N (0, γ−1
i I) = N (0,Γ−1),

Γ = diag((γ> ⊗ 1K)>),

(6)

where γ = [γ1, γ2, . . . , γPN
K

]> and 1K denotes a constant
vector of ones of size K × 1. For K = 1, the prior induces
sparsity in a usual sense (fully unstructured), and its use can
be found in several earlier works [11, 12] including our work
[13]. Then, motivated by our recent result in [14], we use a
combined model prior for the joint noise as

e + w ∼
N∏
i=1

N (0, β−1
i ) = N (0,B−1), B = diag(β), (7)

where β = [β1, β2, . . . , βN ]>. The precisions are {γi} and
{βi} that have Gamma distribution as hyper-priors

p(γi) = Gamma(γi|a+ 1, b), p(βi) = Gamma(βi|c+ 1, d),

where Gamma(γi|a + 1, b) ∝ γai exp(−bγi). The hyper-
parameters are {a, b, c, d}. We find the maximum-a-posteriori
(MAP) estimate of d by maximization of p(d|x,γ,β), as fol-
lows

d̂ = Σ(X̄T)>Bx,
Σ = (Γ + (X̄T)>BX̄T)−1.

(8)

The precisions are updated by using the EM algorithm. Let
θ , {γ, β} denote the parameters that are updated in each
iteration by maximizing the cost (EM help function in MAP
estimation)

Q(θ,θ′) + ln p(θ), (9)
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where θ′ are the parameter values from the previous iteration.
The function Q(θ,θ′) is defined as

Q(θ,θ′) = Ed|x,θ′ [ln p(x,d|θ)],

where E denotes the expectation operator. The maximization
of (9) leads to following update equations over iterations

γnewi = K+2a∑iK
j=(i−1)K+1(Σ′+d̂d̂>)jj+2b

,

βnewi = 1+2c
(x−X̄Td̂)2i +(X̄TΣ′(X̄T)>)ii+2d

,

where Σ′ = (Γ′ + (X̄T)>B′X̄T)−1. The derivation of
the update equations is shown in Section 6. Here we seek
sparsity promoting solutions, and hence the requirement is
that most of the precisions of the prior distribution will turn
out to be high. In order to satisfy the requirement, we use
non-informative hyper-priors (flat distribution) for the pre-
cisions γ,β by fixing their parameters to small values: e.g.
a = b = c = d ∼ 10−3.

3.2. Determined setup

Here, we deal with (5) by using the following isotropic Gaus-
sian prior

d(L) ∼
L∏
i=1

N (0, γ−1) = N (0, γ−1I). (10)

The prior for e + w + n is the same prior as for e + w in
Section 3.1, as shown in (7). Using similar arguments as in
section 3.1, the MAP estimate of d(L) is

d̂(L) = Σ(L)(X̄T(L))
>Bx,

Σ(L) = (γI + (X̄T(L))
>BX̄T(L))

−1.
(11)

and the update equations for the precisions are

γnew = L+2a
trace(Σ′

(L)
+d̂(L)d̂

>
(L)

)+2b
,

βnewi = 1+2c
(x−X̄T(L)d̂(L))

2
i +(X̄T(L)Σ

′
(L)

(X̄T(L))>)ii+2d
.

(12)

The derivation of the update equations is similar as before and
hence not shown. In this case, we use a non-informative prior
for d(L) as we do not have a-priori knowledge about its prop-
erties.. We achieve this behavior by fixing the hyper-priors
for γ as: a ∼ 10−3 , b ∼ 104. For the noise term e + w + n
we still use a sparsity promoting solution, and hence we set
their hyper-priors to c = d ∼ 10−3.

4. EXPERIMENTS

We evaluate the methods using synthetic signals as well as
real speech where P = 10 is used and the sampling rate
is 8 kHz. We considered window lengths of 20 ms, 40 ms
and larger window length of 250 ms. The estimation meth-
ods we used are of two types: least-squares and Bayesian

learning. In least-squares estimation, we compared follow-
ing methods: [a] LP (stationary) - the so-called autocorre-
lation method using statistical stationarity by solving Yule-
Walker equations, [b] LP (least-squares) - the so-called co-
variance method solving (5) for L = P by using a standard
least squares d̂(L) = [X̄T(L)]

†x (pseudo-inverse), [c] TVLP
(least-squares) - solving (5) by pseudo-inverse, for L = 30
when window length is 20 ms, L = 40 when window length
is 40 ms, L = 60 when window length is 250 ms. For
Bayesian learning, we compared: [a] LP (Bayesian) - solving
(5) for L = P by using the relations in section 3.2, [b] TVLP
(Bayesian) - solving (5) by using the relations in section 3.2,
for L = 30 when window length is 20 ms, L = 40 when win-
dow length is 40 ms, L = 60 when window length is 250 ms,
and [c] TVLP (U, Bayesian) - solving underdetermined setup
(4) by using the relations in section 3.1 where the dimension
of each block is K = P = 10. We also considered TVLP (U,
Bayesian) for K = 1, that means using unstructured sparsity
on d, which provided highly degraded performance and we
do not report the degraded results.

4.1. Synthetic signals

4.1.1. Signal generation

Synthetic signals are generated by the model (1) where we
used different types of driving noise qn:
i. Sparse noise: a pulse train with frequency 200 Hz to

model a normal pitch frequency. The signal-to-driving-
noise ratio (SDNR) is σ2

x

σ2
q

= 14.5 dB.
ii. Dense noise: iid Gaussian noise signal such that SDNR

= 13.1 dB.
iii. Joint noise: additive sparse noise and dense noise with

equal variance such that SDNR = 12.5 dB.
To generate a stable signal xn, we used minimum phase
TVLP coefficients, this means the Z-domain analysis filter
1−

∑P
k=1 an(k)Z−k has roots inside the unit circle for all n.

Further, to have a speech like signal, the TVLP coefficients
are drawn from real speech signal analysis. Using a window
length of 160 samples and window shift of one sample for a
real 8 kHz speech signal, we performed autocorrelation based
P = 10 order LP analysis that is guaranteed to provide stable
filter coefficients. As the coefficients are drawn for every
sample of the real speech signal, they can be used as known
TVLP coefficients in the generative model (1).

4.1.2. Performance

For every n’th sample we compute the spectral distortion
(SD) and report the average SD as the performance measure.
The SD for the n’th sample is defined as

SD =

 1

2π

∫ π

−π

[
10 log10

Sn(ω)

Ŝn(ω)

]2

dω

 1
2

, (13)
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Table 1: Comparison of methods for synthetic signals using
average spectral distortion (average SD)

Method Noise types
Sparse Dense Joint

Window length = 20 ms
Ground truth (subspace) 0.85 0.85 0.85

LP (stationary) 2.26 2.88 2.78
LP (least-squares) 2.12 2.59 2.49

TVLP (least-squares) 1.53 2.86 2.64
LP (Bayesian) 1.93 2.59 2.33

TVLP (Bayesian) 1.07 2.95 2.38
TVLP (U, Bayesian) 2.65 3.93 4.57

Window length = 40 ms
Ground truth (subspace) 1.21 1.21 1.21

LP (stationary) 2.81 3.06 2.96
LP (least-squares) 2.80 2.87 2.82

TVLP (least-squares) 1.68 2.55 2.39
LP (Bayesian) 2.56 2.87 2.73

TVLP (Bayesian) 1.22 2.62 2.16
TVLP (U, Bayesian) 1.97 3.43 2.94

where Sn(ω) = 1/|1 −
∑P
p=1 an(p)e(−jωp)|2 is the power

spectrum and Ŝn(ω) = 1/|1 −
∑P
p=1 ân(p)e(−jωp)|2 is the

reconstructed power spectrum. The average SD is computed
for signal samples across 100 windowed signal frames.

Table 1 shows the performance of all competing meth-
ods. The ‘ground truth’ refers to the determined setup (5)
where a baseline average SD is the minimum to arise due to
the truncation of d to d(L). For sparse driving noise, TVLP
(Bayesian) provides the best performance. Further, for dense
and joint driving noise types, the TVLP (Bayesian) provides
good performance. The TVLP (U, Bayesian) turns out to be
degraded. A possible reason for degraded performance in the
underdetermined setup (4) can be the poor condition of sys-
tem matrix X̄, as reflected in (3). The system matrix X̄ is non-
ideal as it is far away from the usual dense wide matrices used
in standard sparse representations and compressed sensing.
We have independently verified that the TVLP (U,Bayesian)
learning algorithm provides good performance in experiments
with ideal dense system matrices (with iid Gaussian entries)
for the considered system sizes. For brevity, we do not report
these experiments in this paper.

4.2. Real speech signals

We used clean speech signals from the Noizeus database.
Considering the task of formant tracking, Fig. 1 shows spec-
trograms of different methods for a 250 ms speech signal
instance. Fig. 1 (a) comprises of a series of periodograms
where each periodogram is computed for a 10 ms window
length to have a better time resolution and a 5 ms shift to have
a better tracking of formants. It is clear that the standard LP
method comes with a high level of granularity, as we observe
in Fig. 1 (b). Finally, by visually comparing Fig. 1 (c) and (d),
TVLP using Bayesian learning can be found to be the best
method in the sense of formant tracking. The formant track-

Fig. 1: Spectrograms as outputs of different methods for real
speech signal. (a) DFT spectrum (periodogram) using win-
dow length of 10 ms and frame shift of 5 ms. (b) for LP using
least-squares with window length of 20 ms and frame shift of
10 ms. (c) for TVLP using least-squares with window length
of 250 ms. (d) TVLP using Bayesian learning with window
length of 250 ms.

ing is more prominent than the competing method of TVLP
using least squares. We rely on visual inspection as there is
no available performance measure to quantify the improve-
ment of Bayesian learning over least-squares for real speech
formant tracking. At this point, we mention that the standard
LP used 250 coefficients, whereas the TVLP methods used
60 coefficients (i.e. L = 60).

5. CONCLUSIONS

We deal with the problem of estimating TVLP coefficients
from speech samples, corresponding to an underdetermined
linear system. We have found that a direct assumption of un-
structured sparsity does not lead to a good estimation perfor-
mance. Instead a subspace approach provides reliable perfor-
mance. Further, among several estimation methods, Bayesian
learning is found to be the best, as it has higher generalization
capability to model different statistics of model parameters
and driving noise.

6. DERIVATION OF UPDATE EQUATIONS

To maximize p(x,d|θ) we use the EM algorithm with prior
assumptions to its parameters θ = {γ,β}.
• 1. Choose an initial setting for parameters θ′
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• 2. E-step. Evaluate Q(θ,θ′) = Ed|x,θ′ [ln p(x,d|θ)]

From Bayes rule,

ln p(x,d|θ) = ln p(x|d,θ) + ln p(d|θ),

where we use the following distribution functions,

p(x|d,θ) ∼ N (X̄Td,B),

p(d|θ) ∼ N (d,Γ).

Then

Q(θ,θ′) = constant +
1

2
ln det(B)

− 1

2
(x− X̄Td̂)>B(x− X̄Td̂)

+
1

2
tr
((

X̄T
)>

BX̄TΣ′
)

+
1

2
ln det(Γ)− 1

2
tr
(
Γ
(
Σ′ + d̂d̂>

))
.

• 3. M-step. Evaluate θ∗ given by

θ∗ = arg max
θ

Q(θ,θ′) + ln p(θ),

where

ln p(θ) = ln p(γ) + ln p(β),

ln p(γi) = a ln(γi) + bγi + constant,
ln p(βi) = c ln(βi) + dβi + constant.

By setting derivatives to zero, we find the update equa-
tions as follows

∂

∂βi
=

1

2βi
− 1

2
(x−XTd̂)2

i

− 1

2
(XTΣ′(XT)>)ii +

c

βi
− d = 0,

βi =
1 + 2c

(x−XTd̂)2
i + (XTΣ′(XT)>)ii + 2d

.

∂

∂γi
=
K

2βi
− 1

2

iK∑
j=(i−1)K+1

(Σ′ + d̂d̂>)jj

+
a

γi
− b = 0,

γi =
K + 2a∑iK

j=(i−1)K+1(Σ′ + d̂d̂>)jj + 2b
.
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