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ABSTRACT
Actual communications systems use high-order modulations
and channels with memory. However, as the memory of the
channels and the order of the constellations grow, optimal
equalization such as BCJR algorithm is computationally in-
tractable, as their complexity increases exponentially with the
number of taps and size of modulation. In this paper, we
propose a novel low-complexity hard and soft output equal-
izer based on the Expectation Propagation (EP) algorithm that
provides high-accuracy posterior probability estimations at
the input of the channel decoder with similar computational
complexity than the linear MMSE. We experimentally show
that this quasi-optimal solution outperforms classical solu-
tions reducing the bit error probability with low complexity
when LDPC channel decoding is used, avoiding the curse of
dimensionality with channel memory and constellation size.

Index Terms— Expectation propagation, BCJR algo-
rithm, low complexity, channel equalization, ISI.

1. INTRODUCTION

Single input single output (SISO) communication channels
are corrupted by additive white Gaussian noise (AWGN) and
introduce inter-symbol interference (ISI) between transmit-
ted symbols, due to its dispersive nature and the multiple
paths of wireless communications [1]. Channel equalization
is a solution to this problem, which provides estimations of
the transmitted symbols and exploit diversity. Furthermore,
rather than hard decision on the received symbols, nowadays
channel decoders highly benefit from probabilistic estimates
for each transmitted symbol given the received sequence [2].

Consider a discrete-time dispersive digital communica-
tion system, where the channel is completely defined by the
channel state information (CSI) which is known at the re-
ceiver. Assuming perfect CSI and a channel with finite mem-
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ory, linear equalization, such as the linear minimum-mean-
squared-error (LMMSE) [1], is a low-cost alternative based
on the minimization of the signal error. However, its results
are far from the optimal solution provided by symbol maxi-
mum a posteriori (MAP) BCJR algorithm. The BCJR algo-
rithm [3] computes the a posteriori probabilities (APP) for
each transmitted symbol providing optimal decisions

p(uk = A|h,y) 8 k = 1, ..., N (1)

where u is the block frame transmitted taken from an N -
dimensional alphabet AN (of a M -ary constellation, i.e., of
order |A| = M ), h is the CSI of a channel with L taps and y
is the received sequence.

The BCJR algorithm works on a trellis representation and
its complexity is proportional to the number of states. This
number increases with the number of taps of the channel
and the size of the constellation used. Specifically, for each
symbol we have M

L�1 possible states whose transition to
the next state depends on each M possible received bit, so
the final complexity of each step of the BCJR algorithm is
O(M

L
), which becomes intractable for the actual communi-

cations systems. The memory needed by this algorithm also
grows exponentially, because it stores M

L�1 variables. For
all these reasons, in this paper we focus on an approximated
solution whose complexity and memory are computationally
realizable for the actual communications systems.

In this paper, we propose the EP algorithm as a low-
complexity and high-accuracy solution for equalization in
SISO systems and channels with memory. This approach has
been successfully already applied to MIMO detection [4] and
channel decoding [5]. The EP algorithm [6–8] can naturally
and efficiently work with continuous distributions by moment
matching and it powerfully deals with complex and versa-
tile approximating functions. This novel solution exhibits a
performance close to the optimal, as illustrated in the experi-
ments included, with linear complexity similar to the one of
the LMMSE. Using EP, we construct a Gaussian approxima-
tion to the posterior distribution of the transmitted symbol
vector, i.e., qEP (u) ⇡ p(u|y). Iteratively, EP finds qEP (u)
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that aims to match the first two moments for each dimension
(in parallel), whose direct computation from p(u|y) becomes
computationally prohibitive for large N . The computational
complexity of the algorithm per iteration is dominated by the
inversion of a N -dimensional matrix, i.e., O(N

3
). In addi-

tion, EP is a soft-output algorithm that provides a posterior
probability estimation for each received symbol, which can
be naturally fed to modern channel decoders.

The following notation is used throughout the paper. If u
is a vector, ui denotes the entry i of the vector u and u

i:j is a
vector with the entries of u in the range i to j. The operator
diag(·) when applied to a vector, e.g. diag(u), returns a di-
agonal matrix with diagonal given by u. To denote a normal
distribution of a random variable u with mean µ and variance
�

2 we use the notation N �
u : µ,�

2
�
. In case of a random

vector u with mean vector µ and covariance matrix ⌃ we use
N (u : µ,⌃).

2. SYSTEM MODEL AND SOLUTIONS

We consider the discrete-time dispersive communication sys-
tem depicted in Figure 1. A block of I message bits, m =

[m1, ...,mI ]
>, is encoded with a rate R = I/T code into

b = [b1, ..., bT ]
>. An M -ary modulation is considered to ob-

tain N = dT/ log2 Me symbols, u. Then, the block frame
u = [u1, ..., uN ]

>
= R(u) + jI(u) is transmitted over the

channel, where each component uk = R(uk) + jI(uk) 2 A.
Here A denotes the set of symbols of the constellation of
order |A| = M , hence the alphabet of u symbols has size
|A|N . The mean symbol energy transmitted is denoted by
Es. The channel is completely specified by the CSI, i.e., h =

[h1, ..., hL]
>, where L is the length of the channel impulsive

response. The received signal y = [y1, ..., yN+L�1]
> 2 C is

given by

2

666664

y1

...

yN+L�1

3

777775
=

2

66666664

h1 0
...

. . .

hL
. . .

h1

. . .
...

0 hL

3

77777775

2

666664

u1

...

uN

3

777775
+

2

666664

w1

...

wN+L�1

3

777775

(2)

or more compactly

y = Hu+w (3)

where H is a (N+L�1)⇥N matrix, the k-th received entry
is given by

yk =

LX

i=1

hiuk�i+1 + wk = h>u
k:k�L+1

+ wk (4)

and w ⇠ N �
w : 0,�2

wI
�

is a AWGN vector. In (2) we con-
sider a transmission of N symbols where ui = 0 8i  0 and
8i > N .

Inference is typically presented using real-valued random
variables, instead of complex-valued variables used in signal
processing for communications. The system model in (3) can
be translated into an equivalent double-sized real-valued rep-
resentation that is obtained by considering the real and imag-
inary parts separately. Therefore, without loss of generality,
in the following we adopt the real-valued channel model.

Given the model above, the posterior probability of the
transmitted symbol vector u has the following expression:

p(u|y) = p(y|u)p(u)
p(y)

/ N �
y : Hu,�2

wI
� NY

k=1

Iuk2A (5)

where Iuk2A is the indicator function that takes value one if
uk 2 A and zero otherwise.

Note that we are using simple equalization (see Figure 1).
However, to improve the results, we could iteratively feed the
soft detector with the output probabilities of the decoder, as
in turbo equalization [9].

2.1. LMMSE algorithm

Given the CSI, the LMMSE equalizer [1] first proceeds by
computing

µMMSE =

✓
H>H+

�

2
w

Es
I

◆�1

H>y (6)

and then, it performs a component-wise hard decision by pro-
jecting each component of µMMSE into the corresponding
constellation

ûk MMSE = arg min

uk2A
|uk � µk MMSE |2. (7)

The complexity of this solution is dominated by the matrix
inversion in (6). The posterior approximate provided by
the LMMSE algorithm is a Gaussian distribution with mean
µMMSE and covariance ⌃MMSE

qMMSE(u) = N (u : µMMSE ,⌃MMSE) (8)

where

⌃MMSE = �

2
w

✓
H>H+

�

2
w

Es
I

◆�1

. (9)

The symbol probability of each entry is computed by inde-
pendently deciding on each component

qMMSE(uk = Ai) / N (Ai : µk MMSE ,⌃k,k MMSE) .

(10)

3. EXPECTATION PROPAGATION

Expectation propagation or EP [6–8, 10] is a technique in
Bayesian machine learning for approximating the true pos-
terior distribution with exponential family distributions. It
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Fig. 1: System model.

is based on the minimization of the Kullback-Leibler diver-
gence.

Suppose we are given some statistical distribution with
hidden x and observables D1 that factors as follows

p(x|D) / f(x)

IY

i

ti(x), (11)

where f(x) belongs to an exponential family F with suffi-
cient statistics �(x) and ti(x) are nonnegative factors that do
not belong to the exponential family F . When the true pos-
terior p(x) in (11) is analytically intractable or prohibitively
complex, EP provides a feasible approximation to p(x) by an
exponential distribution q(x) from F which factorizes as

q(x) / f(x)
Y

i

˜

ti(x) (12)

where each factor ˜ti(x) 2 F is an approximation of the factor
ti(x) in the true posterior (11). The approximation q(x) is
obtained by minimizing the Kullback-Leibler divergence with
respect to p(x), i.e. q(x) = argminq0(x)2F DKL(p(x)kq0(x)).
This solution is equivalent to matching the expected sufficient
statistics

Eq(x)[�(x)] = Ep(x)[�(x)] (13)

where Eq(x)[·] denotes expectation with respect to the distri-
bution q(x). Equation (13) is called moment matching con-
dition. If q(x) is a Gaussian distribution N (x : µ,⌃) then
we minimize the Kullback-Leibler divergence by setting the
mean µ of q(x) equal to the mean of p(x) and the covariance
⌃ equal to the covariance of p(x). However, the computa-
tion of the moments Ep(x)[�(x)] to construct q(x) accord-
ing to them is intractable because we can not infer over p(x).
To solve this problem, Minka proposed a sequential EP algo-
rithm to iteratively obtain the solution in (11). The main idea
behind the sequential EP algorithm is to do inference over a
distribution of the form

p̃i(x) / q(x)
˜

ti(x)
ti(x) (14)

and optimize each factor ˜

ti(x) in turn independently in the
context of all of the remaining factors. A detailed description
of the EP algorithm is given in Algorithm 1 where q

(`)
(x) is

the approximation to q(x) in (12) at iteration `.
1For simplicity, we omit the dependence on the observed data D to keep

the notation uncluttered in the rest of the paper.

Algorithm 1 The EP algorithm
Initialiaze all the approximating factors ˜ti(x) and then the
approximation q(x) in (12) by setting these factors ˜ti(x).
repeat

for i = 1, ..., I do
1) Compute the cavity distribution by removing ˜

ti(x)
from the approximated distribution q(x) by division,
i.e., q(`)\i(x) = q

(`)
(x)/˜t

(`)
i (x).

2) Compute the distribution p̃i(x) / ti(x)q
(`)\i

(x)
and its moments

Ep̃i(x)[�(x)] (15)

3) Compute the new refined factor ˜

t

(`+1)
i (x)

by setting the moments of the distribution
˜

t

(`+1)
i (x)q(`)\i(x), denoted as E

t̃(`+1)
i (x)q(`)\i(x)

(x),
equal to (15).

end for
until convergence (or stopped criterion)

4. BLOCK-EP EQUALIZER

In this section, we propose as a novel approach using the EP
for channel equalization in a SISO system with ISI, naming it
block-EP equalizer. We approximate the optimal solution in
(5) by replacing each one of the non-Gaussian factors by an
unnormalized Gaussian [4]

q(u) / N �
y : Hu,�2

wI
� NY

k=1

exp

✓
�kuk � 1

2

⇤ku
2
k

◆
(16)

where �k and ⇤k > 0 are real constants. For any value
� 2 RN and ⇤ 2 RN

+, q(u) is a Gaussian N (u : µ,⌃) with
mean vector µ and covariance matrix ⌃

⌃ = (�

�2
w H>H+ diag(⇤))

�1 (17)

µ = ⌃(�

�2
w H>y + �). (18)

A detailed implementation of the block-EP equalizer (BEP
equalizer) is included in Algorithm 2. At this point it is im-
portant to remark that in the approximation proposed we re-
tain all the knowledge on the systems by including the first
factor in (16) while approximating with EP the unknowns.
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Algorithm 2 Block-EP equalizer

Initialize �

(0)
k = 0 and ⇤

(0)
k = E

�1
s for k = 1, ..., N .

The pair (�(`+1)
k ,⇤

(`+1)
k ) is computed as follows:

for ` = 0, ..., P � 1 do
for k = 1, ..., N do

1) Compute the k-th marginal of the
distribution q

(`)
(u) in (16), namely

q

(`)
k (uk) = N

⇣
uk : µ

(`)
k ,�

2(`)
k

⌘
.

2) Compute the cavity marginal

q

(`)\k
(uk) =

q

(`)
k (uk)

exp

⇣
�

(`)
k uk � 1

2⇤
(`)
k u

2
k

⌘ s

s N
⇣
uk : t

(`)
k , h

2(`)
k

⌘
(19)

where

h

2(`)
k =

�

2(`)
k

1� �

2(`)
k ⇤

(`)
k

, t

(`)
k = h

2(`)
k

 
µ

(`)
k

�

2(`)
k

� �

(`)
k

!

3) Compute the mean µ

(`)
pk and variance �

2(`)
pk of the

distribution p̂

(`)
(uk) / q

(`)\k
(uk)Iuk2A.

4) Finally, the pair (�(`+1)
k ,⇤

(`+1)
k ) is updated so that

the following unnormalized Gaussian distribution

q

(`)\k
(uk) exp

✓
�

(`+1)
k uk � 1

2

⇤

(`+1)
k u

2
k

◆
(20)

has mean and variance equal to µ

(`)
pk and �

2(`)
pk . The

solution is given by

⇤

(`+1)
k = �

 
1

�

2(`)
pk

� 1

h

2(`)
k

!
+ (1� �)⇤

(`)
k (21)

�

(`+1)
k = �

 
µ

(`)
pk

�

2(`)
pk

� t

(`)
k

h

2(`)
k

!
+ (1� �)�

(`)
k (22)

end for
end for
Obtain the Gaussian approximation after EP algorithm,
q(u) / N (u : µ,⌃), where µ and ⌃ are given by (18)
and (17), respectively.
Compute the hard output and its symbol probability as

ûk = arg min

uk2A
|uk � µk|2 (23)

q(uk = Ai) / N (Ai : µk,⌃k,k) (24)

Eqn. (21) and (22) are proposed following the guidelines
in [4, Eq. 35-36]. The parameter update in (21) may return
a negative value ⇤

(`+1)
k for some k’s which means that there

is no pair (⇤(`+1)
k , �

(`+1)
k ) that sets the variance of the Gaus-

sian in (20) at �2(`)
pk . For that k’s, we keep the previous values

for these parameters. Note that all (�(`+1)
k ,⇤

(`+1)
k ) pairs for

k = 1, ..., N can be updated in parallel and we only require
the computation of a N -dimensional inverse matrix in (17)
for each `-iteration (typically around 10 [4]), so complexity of
EP is dominated by the size of that inverse, i.e., O(N

3
). We

introduce a smoothing parameter � 2 [0, 1] and a small con-
stant ✏ that sets a minimum variance �

2(`)
pk = max(✏,�

2(`)
p̂k

)

allowed per component to avoid numerical instabilities.

5. SIMULATION RESULTS

In this section, we illustrate the good performance of the BEP
equalizer for channels with memory. We have set � = 0.3,
✏ = 1e

�4 (for hard decisions), ✏ = 0.5 (for soft decisions)
and P = 10 iterations in the EP algorithm. In all the exper-
iments presented in this section we consider block frames of
500 random bits encoded with a regular LDPC of rate 1/2 and
we average the BER over 1000 different frames and 100 re-
alizations of channels. Each tap is Gaussian distributed, and
the whole channel response is normalized.

We first consider channels of 5 taps and 4-PAM modu-
lation. In Figure 2, we depict the BER curves before (solid
lines) and after (dashed lines) the LDPC decoder for BEP,
LMMSE and BCJR equalization. Compared to the BCJR
solution before the decoder, we are far about 3 dB for
BER=10�3 and compared with the LMMSE method, BEP
is able to improve the performance in 5 dB. After the de-
coder, we are less than 3 dB far from optimal solution for
BER=10�3 and EP outperforms LMMSE in 3 dB for the
same BER. A similar study is presented in Figure 3(a) for
channels of 6 taps and 16-PAM modulation, excluding the
BCJR solution, which we do not simulate due to its un-
affordable computational complexity. For BER=10�3 BEP
equalization outperforms LMMSE in 5 dB before the decoder
and 4 dB after the decoder. In Figure 3(b) we illustrate the
same constellation than in (a), but now increasing the number
of taps to 15. Even with this high memory, EP exhibits an
excellent performance. Specifically, we obtain a gain of 4 dB
before the decoder for BER=10�3 and 2 dB after the decoder,
with respect to LMMSE.

Finally, a computational complexity2 analysis between
BEP and BCJR is given in Table 1. LMMSE algorithm is
not included because it only differs in a factor P compared
with the BEP algorithm. When both L and M are not large,
as in Figure 2, the complexity of the BCJR algorithm is not
high and it can be computed. However, when L and M are
increased, as in Figure 3, its complexity grows exponentially
and becomes intractable while BEP remains unchanged with
L or M .

2The complexity of the BCJR algorithm is O(MLN) while BEP is
O(PN3).
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Fig. 2: BER for LMMSE, BEP and BCJR equalizers for channels
with 5 taps and 4-PAM modulation.
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Fig. 3: BER for LMMSE and BEP equalizers for 16-PAM.

Complexity Reduct.
Figure M L N BCJR BEP factor
Fig. 2 4 5 500 512e3 125e7 4e�4

Fig. 3(a) 16 6 250 419e7 156e6 27
Fig. 3(b) 16 15 250 288e18 156e6 184e10

Table 1: Complexity comparison between algorithms.

6. CONCLUSION AND FUTURE WORK

The design of efficient equalizers is a challenging open prob-
lem. In this paper, we focus not only on symbol estimation

but also the posterior probability estimation for each received
symbol since the LDPC decoder needs a high quality APP
to perform optimally. The optimal solution is intractable for
the actual communications systems whenever we have large
channel memory and/or large constellations. Classical meth-
ods such as linear MMSE can be used at the cost of a poorer
performance. The novel BEP equalizer proposed in this pa-
per is a soft-output algorithm that solves this problem, con-
structing tractable approximation to a given probability dis-
tribution. We have shown through simulations that the BEP
equalizer quite outperforms the LMMSE, even with a high
number of taps. Since it exhibits a similar structure, its com-
putational burden and memory needs are similar to those of
the LMMSE. Further improvements on the reduction of its
computational complexity, i.e. of the covariance matrix in-
version, remains as a future line of research.
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