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ABSTRACT

In this paper, a method for Inverse Synthetic Aperture Radar
(ISAR) image formation based on the use of the Complex
Empirical Mode Decomposition (CEMD) is proposed. The
CEMD [1] which based on the Empirical Mode Decompo-
sition (EMD) is used in conjunction with a Time-Frequency
Representation (TFR) to estimate a 3-D time-range-Doppler
Cubic image, which we can use to effectively extract a se-
quence of ISAR 2-D range-Doppler images. The potential of
the proposed method to construct ISAR image is illustrated
by simulations results performed on synthetic data and com-
pared to 2-D Fourier Transform and TFR methods. The simu-
lation results indicate that this method can provide ISAR im-
ages with a good resolution. These results demonstrate the
potential application of the proposed method for ISAR image
formation.

Index Terms— Inverse Synthetic Aperture Radar, Image
formation, Complex Empirical Mode Decomposition, Time-
Frequency Representation.

1. INTRODUCTION

Nowadays in signal processing, spectrum analysis plays a key
role to characterize and understand many phenomena and es-
pecially for Radar systems such as the Inverse Synthetic Aper-
ture Radar (ISAR). However, for a non-stationary signal, the
frequency components can appear or disappear. To deal with
these temporal evolutions, a Time-Frequency Analysis must
be considered [2, 3]. The reconstruction process of ISAR
image exploit the target’s motions. Thus, ISAR images are
usually obtained by the range-Doppler algorithm based on
the 2-D Fourier Transform to convert the data in the spa-
tial frequency domain to reflectivity information in the spa-
tial domain. However, because of the target maneuvering,
the Doppler spectrum becomes time-varying and the image is
blurred. Instead of the Fourier Transform, TFR techniques
can be adopted to improve the resolution of ISAR images
[3-5]. In recent years, a great deal of interest has been paid
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to transformations or processing that map the signal into its
TFR [5-7].

Recently, Empirical Mode Decomposition (EMD) has been
introduced by Huang et al. [8] for analyzing data from non-
stationary and nonlinear processes. It is a new local and fully
data-driven method for the multiscale analysis of nonlinear
and non-stationary real-world signals. Hence, the analysis
is self-adaptive in contrast to the traditional methods where
the basis functions are fixed [9]. The EMD is based on the
sequential extraction of energy associated with various in-
trinsic time scales of the signal, called Intrinsic Mode Func-
tions (IMF). The EMD has received more attention in terms
of interpretations [10, 11], improvement [1, 12—-14], Time-
Frequency Analysis [15-17], denoising [18, 19], Speech
enhancement [20], and Radar field [21-25] ....

In this present work, we investigate an approach based on
CEMD and TFR, called CEMD-TFR, for ISAR image con-
struction. The paper is organized as follows. In section 2,
we briefly review the EMD algorithm of real-valued data, and
describe several extensions methods to the complex domain
in order to handle the complex ISAR raw data. Section 3
gives an overview of ISAR formation with Time-Frequency
Representation and the method based on EMD-TFR. Some
simulations and comments are proposed in section 4. Finally,
the last section gives some conclusions and remarks.

2. METHOD DESCRIPTION

2.1. EMD algorithm

The EMD method decomposes a signal z(t) into a finite set
of oscillatory modes, called Intrinsic Mode Functions (IMF),
through an iterative process called sifting algorithm [8]. The
name IMF is adopted because it represents the fast to the slow
oscillations in the signal. The IMF represent the natural oscil-
latory mode embedded in signal and work as the basis func-
tions. Usually, an IMF can be both amplitude and frequency
modulated (AM-FM). The essence of the EMD is to identify
the IMF in different time scales, which can be defined locally
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by the time lapse between two extrema of an oscillatory mode
or by the time lapse between two zero crossings of such mode.
The EMD picks out the highest frequency oscillation that re-
mains in the signal. Thus, locally, each IMF contains lower
frequency oscillations than the one extracted just before. The
EMD decomposes a signal into a sum of IMF that : (R1) have
the same number of zeros crossings and extrema; and (R2)
are symmetric with respect to the local mean. The procedure
used for extraction of an IMF from signal z(¢) is outlined in
algorithm :

Algorithm : EMD.

Step 1. Find the location of all local maxima/minima of x(¢).
Step 2.  Compute Upper (U (t)) and Lower (L(t)) envelope
by interpolating using cubic spline, respectively
local maxima and minima.
Step 3.  Compute the local mean envelope :
u(t) = [U() + L(1)]/2.
Step 4.  Subtract the local mean from the signal to obtain the
oscillatory mode : h(t) < z(t) — u(t).
Step 5. Compute the stopping criteria SD :

if h(t) obeys the stopping criteria S D, then h(t) is
an IMF otherwise set z(t) < h(t) and repeat the

process from Step 1.

Once the first IMF is estimated, the same process is applied
to the residual :(¢) — h(t) to extract the remaining IMFs. The
sifting is also repeated several times in order to get h(t) as to
be a true IMF that fulfills the requirements (R1) and (R2). The
result of the sifting procedure is that z(¢) will be decomposed
into IM F;(t),j =1,... N and residual ry(¢) :

N
2(t) = IMF;(t) +ry(t). (1)
j=1

The total sum of the IMFs matches the signal very well
and therefore ensures completeness [8]. The sifting pro-
cess has two effects: (a) eliminates riding waves and (b)
smooth uneven amplitudes. To guarantee that the IMF com-
ponents retain enough physical sens of both AM and FM
informations, the stop criterion is originally based on the
normalization squared difference between two successive
sifting iterations [8]. It should be noted that there are other
more robust criterion based upon the original definition of
IMF [10,11].

2.2. Complex extension of EMD

The original EMD can only be applied to real-valued time se-
ries, so it is necessary to extend the EMD to the complex do-
main. Despite original EMD becoming a standard for Time-
Frequency analysis of nonlinear and non-stationary signals,
its multivariate extensions, especially on complex signals (or
images), are only emerging. Different methods have been
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proposed such as RIEMD [26], BEMD [12] and CEMD [1].
Besides these approaches, the extensions to trivariate and
multivariate methods have also been developed and applied
successfully [13,14,25,27]. It should be noted that the recent
advances in applications of micro-Doppler effects have been
presented in radar area based on EMD [22,25,28].

In [26], the authors proposed a method called Rotation Invari-
ant Empirical Mode Decomposition (RIEMD), which differs
from the original EMD in the way of getting the extrema and
the envelopes. The extrema were thought as the locus where
the first derivative of the angle changes its sign, and the max-
ima and minima were assumed to occur alternately. Then the
cubic spline interpolation is performed directly in C to obtain
the complex envelopes which are then averaged to obtain the
local mean of signal. The other steps were same as the origi-
nal EMD. This approach appears as a natural extension of real
valued EMD.

In [12], Rilling et al. proposed another method termed Bivari-
ate Empirical Mode Decomposition (BEMD) based on the
idea of replacing the oscillation notion by a rotation notion.
The complex signal was firstly projected to a certain direc-
tions to extract the maxima of the projection vector, and then
connected these points forming the upper envelope. Repeat
projecting the complex signal to different directions to obtain
the envelopes in different directions. This approach effec-
tively sifts rapidly rotating signal components from the slowly
rotating ones and uses the same complex cubic spline inter-
polation scheme as RIEMD. It should be noted that BEDM
algorithm calculates local mean envelope based on the ex-
trema of both (real and imaginary) components of a com-
plex signal and thus yielding more accurate estimates than

RIEMD [26,29].
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In [1], the authors proposed a method named Complex Em-
pirical Mode Decomposition (CEMD). This approach uses
the inherent relationship between the positive and negative
frequency components of a complex signal and the Hilbert
Transform. Indeed, a complex signal has a asymmetric spec-
trum and can be converted into a sum of two analytic signals
by first separating the positive and negative frequency compo-
nents of the spectrum and then converting back into the time
domain (Figure 1). And subsequently, the original EMD is
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Fig. 1. Block diagram of CEMD algorithm.
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applied to the two extracted signals. The algorithm has rig-
orous mathematical background and it preserves the dyadic
filter bank properties [1,29]. However, this method cannot
guarantee an equal number of real and imaginary IMFs. In
the present work, this method was used because it seems more
applicable to ISAR image construction.

3. TIME-FREQUENCY REPRESENTATION-BASED
ISAR FORMATION

The common radar imaging method is based on the 2-D
Fourier Transform (FT) and assumes that the Doppler fre-
quency shifts must remain constant [3, 6]. If input complex
data consists of M time history series, each one having length
of N, then it should be noted that the 2-D FT based image
formation generates only one image frame from M x N data
array as shown in Figure 4(a). However, when the Doppler
spectrum is time-varying due to target’s motion, ISAR image
based on Fourier Transform becomes unclear and smeared.
However, the joint Time-Frequency Transform can be used to
enhance the ISAR images of moving targets [3,4, 6].

3.1. ISAR imaging based on TFR

To compute a clear ISAR image of maneuvering targets, a
Time-Frequency Transforms is always desirable. Figure 2
shows the radar imaging system based on the TFR [6].
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Fig. 2. Block diagram of Time-Frequency based ISAR image
formation.

It should be noted that the Time-Frequency Transform based
image formation takes the TFR for each time history series
and generates an N x N time-Doppler representations. By
combining the M time-Doppler representations at M range
cells, we obtain a cube with N x M x N time-range-Doppler
values. There are also IV images frames availables and ev-
ery one represents a full range-Doppler images at a particular
time instant. Therefore, by replacing the Fourier Transform
with the TFR, a 2-D range-Doppler Fourier image frame be-
comes a 3-D time-range-Doppler images cube. By sampling
the image cube in time, a time sequence of 2-D range-Doppler
images can be viewed. Each individual time-sampled frame
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from the cube provides not only a clear image with superior
resolution but also time-varying properties from one time to
another. Different methods have been proposed for ISAR
imaging using TFRs such as Cohen class Time-Frequency
distribution [3,4, 6], S-Transform [5, 7] or Harmonic Wavelet
[30].

3.2. ISAR imaging based on EMD-TFR

The approach of the present work combines the CEMD to
TFR as Spectrogram, Wigner-Ville Distribution (WVD) or
Smoothed Pseudo Wigner-Ville Distribution (SPWVD). The
CEMD-TFR method can be divided into two parts. The first
one deals with the separation of the signal into IMFs using
the CEMD. In second part, the Time-Frequency Analysis is
applied on the separated components (IMFs) using Spectro-
gram, WVD or SPWVD (Figure 3).
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Fig. 3. Block diagram of CEMD-TFR algorithm based ISAR
image formation.

Thus, the EMD is used as a multiband Itering to separate each
components in the temporal domain before applying TFR.
The intrinsic mode functions are used to construct a series
of views by highlighting concentrations of energy in Time-
Frequency domain. Therefore, we obtain a composite TFR
based on a multiple views for each range profile signal. The
advantage of such a method is that it can overcome interfer-
ence in TFRs generated by the existence of multiple signal
components. Once all TFRs associated with each IMF for a
unique range cell are obtained, we compute a unique TFR (as
a simple sum). Actually, the final result is an energy TFR at
each range cell and along pulses, and time-Doppler spectrum
is estimated. Then, by combining the time-Doppler spectrum
at all range cells, we obtain a 3-D time-range-Doppler cu-
bic image. Finally, the last step of classical image formation
based on TFR is applied and a sequence of 2-D range Doppler
images can be extracted.

4. RESULTS

We tested our approach on the simulated MIG2S5 dataset de-
scribed in [3, 6]. The simulated aircraft is composed of 120
point scatterers of equal reflectivity. The raw data contains
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512 recurrences of 64 range bins. For all simulations, stan-
dard motion compensation algorithm has been applied to the
data. It should be noted that the representation of these fig-
ures is in decibel. The EMD-TFR applied to the cross-range
dimension significantly improves image readability as it is
presented in the Figure 6 compared to the conventional 2-D
Fourier Transform (FT) (Figure 4(a)), Spectrogram (Figure
4(b)) and RTF (Figure 5). Figure 5(a) shows the ISAR im-
age formation using WVD. The blurring effects due to the
cross-term interference associated with the WVD are evident.
To reduce the cross term interference, the SPWVD (Figure
5(b)) can be used to preserve TFR properties with slightly re-
duced time-frequency resolution and largely reduced cross-
term interference. Comparing the EMD-WVD against the
WVD, we see that in the figure 6(b) the components are well
estimated and reduced cross-term interference with a good
resolution. The simulation results show that this EMD-TFR
can improve the constructed image compared with the Fourier
Transform method. The EMD-TFR provides very interesting
performance when the Time-Frequency energy is presented
by the concentration and resolution of TFR along the indi-
vidual component of the multi-components (non-stationary)
signals.

2-D FT range-DopplerImage ‘Spectrogram range-Doppler Image
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(a) Using 2-D FT. (b) Using Spectrogram (frame 10).

Fig. 4. Comparison of 2-D FT and Spectrogram based image.
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Fig. 5. Comparison of Time-Frequency based image.

5. CONCLUSIONS

In this paper, a new method of ISAR image formation based
on EMD and TFR is proposed in order to improve the ISAR
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Fig. 6. Comparison of EMD-TFR based image.

image resolution. The performance of the proposed method
is compared with 2-D Fourier Transform method as well as
conventional TFR methods (Spectrogram, WVD, SPWVD).
The effectiveness of this approach has been veried with simu-
lated data from a non-cooperative target. The obtained results
show that the proposed approach is an effective and a promis-
ing imaging method for ISAR image formation. Nevertheless,
this technique is empirical, so further theoretical explanation
work is needed and a large class of data are necessary to con-
firm the obtained results. As future work, we plane to study
the EMD-TFR in noisy environment and we intend to address
the general decision-making process (classification problem
and target identification). It seems also to be interesting to
use others TFR such as the Huang-Hilbert Transform [8] or
the Teager-Huang Transform [15].
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