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ABSTRACT

We consider frequency selective channel estimation in the up-
link of massive MIMO-OFDM systems, where our major con-
cern is complexity. A low complexity distributed LMMSE al-
gorithm is proposed that attains near optimal channel impulse
response (CIR) estimates from noisy observations at receive
antenna array. In proposed method, every antenna estimates
the CIRs of its neighborhood followed by recursive sharing
of estimates with immediate neighbors. At each step, every
antenna calculates the weighted average of shared estimates
which converges to near optimal LMMSE solution. The sim-
ulation results validate the near optimal performance of pro-
posed algorithm in terms of mean square error (MSE).

Index Terms— Channel estimation, massive MIMO,
Least squares, LMMSE, distributed estimation

1. INTRODUCTION

Next generation wireless communication system require con-
siderable data throughput and strong resilience against multi-
path fading. Massive MIMO systems by virtue of utilizing
very large antenna arrays, typically of the order of few hun-
dreds, at the base station (BS) can potentially provide huge
gains in system throughput, energy efficiency, security and
robustness of wireless systems [1–3]. Because of these vital
advantages, massive MIMO has attracted a lot of research in-
terests and also envisioned as an enabling technology for next
generation (5G) broadband wireless communications [4].

One of the bottleneck in achieving full advantages of mas-
sive MIMO is the accurate estimation of CIR between each
transmit-receive antenna pair. The LMMSE being an optimal
estimator in the presence of additive white Gaussian noise
(AWGN), has been extensively studied for MIMO-OFDM
systems [5–7]. Unlike least squares (LS) or interpolation
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based techniques, LMMSE can exploit the additional statisti-
cal information to deliver improved performance. However,
LMMSE is impractical for massive MIMO as it entails huge
complexity due to matrix inversion of very large dimen-
sionality. Some ways to reduce the complexity of LMMSE
have been proposed e.g [8, 9]. Other methods showing in-
creased interest in channel estimation for massive MIMO
include [10, 11]. However, the existing methods mostly deal
with single-carrier flat-fading channels or have an underlying
assumption that the channel must be sparse.

Inspired by our previous work [12], where channels were
assumed to be sparse, we propose a distributed channel es-
timation algorithm for massive MIMO under more realistic
assumption of correlated Rayleigh fading CIRs. Although
distributed estimation has been studied in various contexts
(see [13,14] and references there in), to the best of our knowl-
edge, it is not yet investigated in massive MIMO.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the system and channel model. Section
3 presents different MMSE based channel estimation and
discuss their limitations for massive MIMO. The proposed
algorithm is presented in Section 4. Simulation results are
presented in Section 5 and we finally conclude in Section 6.

Notations: The lower case letters x and lower case boldface
x represent the scaler and the (column) vector respectively
while x(i) denotes individual entries of vector x. Matrices are
denoted by upper boldface letters X whereas the calligraphic
notation X is reserved for vectors in the frequency domain.
(.)T, (.)∗ and (.)H represent transpose, conjugate and conju-
gate transpose (hermitian) operations respectively. E{.} de-
notes the expectation and the weighted norm of a vector x is
represented by ‖x‖2A , xHAx.

2. SYSTEM MODEL

Consider a multi-user massive MIMO wireless system where
the base station (BS) in each cell is equipped with a uniform
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(a) (b)

Fig. 1: (a) UPA structure for My = 3 and Nx = 4 with an-
tenna indexing (b) Single-cell system layout

planar array (UPA) consisting of large number of antennas,
while each user terminal has a single antenna. The BS an-
tennas are distributed across My rows and Nx columns of
Np = My × Nx elements with horizontal and vertical spac-
ing of dx and dy respectively. We define the (m,n)th antenna
as an element in mth row and nth column of the array with
index r = m+My(n−1) where 1 ≤ m ≤My , 1 ≤ n ≤ Nx
and 1 ≤ r ≤ Np. Fig. 1(a) shows an example of 3 × 4 UPA
structure with antenna indexing.

For uplink channel estimation, we assume that all users
in a particular cell are assigned orthogonal OFDM tones so
that there is no intra-cell interference. Moreover, we do not
address pilot contamination that may result from reusing of
pilots in the neighboring cells [1]. Hence for the sake of chan-
nel estimation, the discussion that follows assumes a single
cell with just one user and a BS as shown in Fig. 1(b).

A. Channel Model
The frequency selective channel between a user and receive

antenna r is modeled by gaussian L-tap channel impulse re-
sponse (CIR) vector hr , [hr(0), hr(1), · · · , hr(L− 1)]

T.
We collect the lth tap of all transmit-receive pairs to form an
Np dimensional tap vector h(l) ,

[
h1(l), h2(l), · · · , hNp

(l)
]T

and let the NpL dimensional composite channel vector be de-
fined as h ,

[
hT
1 ,h

T
2 , · · · ,hT

Np

]T
. Then, the NpL × NpL

dimensional (composite) channel correlation matrix is,

Rh , E{hhH} = Rs ⊗Rtap (1)

where, Rs = E{h(l)h(l)H},∀l represents an Np × Np
dimensional antenna spatial correlation matrix, Rtap =
E{hrhH

r },∀r represents an L × L dimensional channel
tap correlation matrix that depends on channel power delay
profile (PDP), assumed to be identical for all channels and
⊗ represents the Kronecker product. For the spatial correla-
tion matrix, we shall adopt the ray-based 3D channel model
from [15] which is well suited for rectangular arrays.

B. Signal model
We assume that there are N OFDM sub-carriers and let X

represent the N -dimensional information symbols of the
user. The equivalent time-domain symbols are obtained by
taking inverse Fourier transform i.e. x = FHX , where
F is an N × N unitary DFT matrix whose (l, k) entry is
fl,k = 1√

N
e−j2πlk/N . Hence, the N dimensional frequency

domain OFDM symbol vector received at rth BS is given by,

Yr = diag(X )Fhr + Wr = Ahr + Wr (2)

where A , diag(X )F, Wr is complex AWGN noise vec-
tor with pdf: CN

(
0, σ2

wIN
)

assumed uncorrelated with the
channel and F is truncated Fourier matrix formed by select-
ing first L columns of F. Let K sub-carriers are reserved for
pilots and the remaining N − K for the data transmission,
then for a set of pilot indices P , equation (2) reduces to,

Yr(P) = A(P)hr + Wr(P) (3)

where r = 1, · · · , Np. These Np systems of equations can be
combined by stacking all the observations to get,

Y(P) = [INp
⊗A(P)]h + W(P) (4)

where, Y(P) =
[
Y1(P)T, · · · ,YNp

(P)T
]T

, W(P) =[
W1(P)T, · · · ,WNp

(P)T
]T

and IN represents an N × N
identity matrix. Note that the number of unknown channel
coefficients in (4) are NpL whereas the total number of equa-
tions areNpK. In the following we assume that the necessary
condition L ≤ K � N, to solve (3) and (4) is satisfied.

3. LMMSE BASED CHANNEL ESTIMATION

We pursue different LMMSE techniques that can be adopted
for estimation of CIRs between user and each BS antenna.

A. The Localized LMMSE (L-LMMSE) estimation
In this approach all CIRs are estimated independently based
on the observations received at each antenna element. Thus
dropping the index vector P for convenience, the classical
LMMSE estimate of hr from (3), is obtained by [16],

ĥ(local)
r =

[
R−1tap +

1

σ2
w

AHA

]−1
AHR−1w Yr (5)

The error covariance matrix of rth channel vector is given by,

Cr
e =

[
R−1tap +

1

σ2
w

AHA

]−1
(6)

The MSE at rth antenna is trace of (6) and the global MSE
can be obtained by MSE(local) =

∑Np

r=1 trace (Cr
e). Obvi-

ously, the performance of L-LMMSE is not optimal in the
sense of minimizing the global MSE but has low complexity
of the order O

(
NpL

3
)
, which increases linearly with number

of BS antennas.
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For massive MIMO with extremely large number of an-
tennas located in close proximity at the BS, the channels are
highly likely to be correlated. The L-LMMSE is unable to
exploit these spatial correlations among array elements.

B. The Optimal LMMSE (O-LMMSE) Solution
The optimal estimation strategy is to minimize the overall or
the global MSE i.e. E{‖h − ĥ‖2} based on all observations
Y as given in (4). The solution is obtained by

ĥ(opt) =

[
R−1h +

1

σ2
w

ÁHÁ

]−1
ÁHR−1w Y (7)

where, Á = INp
⊗A , Rh is given in (1) and for convenience

we continue to omit the index vector P . The corresponding
error covariance matrix in this case is

C(opt)
e = E{h̃h̃H} =

[
R−1h +

1

σ2
w

ÁHÁ

]−1
(8)

where h̃ represents the estimation error vector. The (global)
MSE is MSE(opt) = trace (Copt

e ), where it is obvious that
MSE(opt) ≤ MSE(local), i.e. the optimal solution yields bet-
ter MSE performance than the localized one by utilizing the
spatially correlated observations of each antenna. However, it
has two major drawbacks: (i) Realization of optimal strategy
requires the global sharing of information between each an-
tenna element and a central processor which results in com-
munication overhead, (ii) The computational complexity of
optimal LMMSE from (7) is of the order O

(
N3
pL

3
)
. In mas-

sive MIMO scenario, where Np is of order of few hundreds,
both of these operations are challenging and impractical. The
shortcomings of localized and centralized solutions motivate
us to propose a low complexity distributed LMMSE estima-
tion as described next.

4. THE DISTRIBUTED LMMSE ESTIMATION

We aim to solve the optimal LMMSE problem in a distributed
manner where the information processing takes place locally
at each antenna node and at the same time the nodes can col-
laborate with each other. The proposed distributed LMMSE
(D-LMMSE) estimator is composed of two steps; the estima-
tion step and the sharing step as described below.

A. Estimation Step
In this step, each antenna acting as a center node rC , estimates
not only its own CIR but also the CIRs of its neighborhood.
The neighborhood of rC consists of 4-direct neighbors (see
Fig. 2) represented by the set N = {rL, rR, rU , rD}. For
elements lying at the edges of array the number of neighbors
are 2 ≤ |N | ≤ 4. The set rC ∪ N is denoted by N+. Also,
let the corresponding channel vectors be represented by hC ,
hL, hR, hU and hD respectively and hc be the |N+|L ×
1 dimensional composite channel vector of the central node
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Fig. 2: (Left) Information diffusion process : During first iter-
ation rC (green) receives information from its 4-direct neigh-
bors (blue). In the second iteration, the information from next
nearest neighbors (red) also comes in and so on. (Right) Shar-
ing details in a 3 × 4 antenna array where the neighboring
elements (indices 4 and 2) share only the partial information
(highlighted in yellow) with the central node (index 1).

and its |N | direct neighbors. In estimation step, the centre
node obtains the estimate of hc by solving the weighted least
squares (WLS) problem,

ĥc = min︸︷︷︸
hc

‖YC(P)−A(P)hC‖2R−1
w

+ ‖hc‖2R−1
hc

(9)

where Rhc , E{hc(hc)H}. The solution to above minimiza-
tion problem is,

ĥc =

[
R−1hc +

1

σ2
w

ĀHĀ

]−1
ĀHR−1w YC(P) (10)

where, Ā =
[
A(P) 0K×|N|L

]
as each antenna exploits

only its own observations. Likewise, the center node also
computes the error covariance matrix,

Cc
e =

[
R−1hc +

1

σ2
w

ĀHĀ

]−1
(11)

which can be computed off-line. Observe that the complexity
for computing above estimates and error covariance matrix is
still of the orderO

(
NpL

3
)

for all antennas. It is assumed that
the center node rC has available correlation information of its
neighborhood to construct Rhc . From (11) this also implies
that the center node has available error covariance matrices of
its neighbors. Having found |N+| estimates, each antenna is
ready to initiate the sharing step.

B. Sharing Step
The sharing step is the key to our distributed algorithm where
the antennas collaborate locally to share their estimates with
the neighbors. The information sharing is done only partially
such that each antenna transmits selected components i.e., the
estimate of his own and that of the neighboring channel. An
example of how this sharing takes place is detailed in Fig. 2
for a 3 × 4 array with central element rC = 1 having two
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neighbors; N = {rR = 4, rD = 2}. The composite vector of
the central node and those received (shown underlined) from
its neighbors are explicitly given by,

ĥ1 =

ĥ1

ĥ4

ĥ2

 , ĥ
4

=

ĥ1

ĥ4

0

← ĥ4, ĥ
2

=

ĥ1

0

ĥ2

← ĥ2 (12)

where we refer to the component ĥj of ĥk as the estimate of
node j computed by node k and the null entries correspond
to the components which are not shared by the neighbors.

Update: As a result of sharing, the central node receives in-
formation from its |N |-direct neighbors and consequently up-
dates its estimate and the error covariance matrix by optimally
combining them as follows [16] ,

C−1c(i+1)
e ĥc(i+1) = C−1c(i)e ĥc(i) +

∑
r∈N

C−1r(i)e ĥ
r(i)

(13)

C−1c(i+1)
e = C−1c(i)e +

∑
r∈N

(
C−1r(i)e −R−1hr

)
(14)

where, i is the iteration index. Since the center node has avail-
able correlation and error covariances, it can construct the re-
quired (i.e. underlined) matrices corresponding to the shared
estimates for each of its neighbour. Observe from (13) that the
reliable estimates are weighted more than the unreliable ones,
hence the null block entries of resulting error covariance and
correlation matrices should be assigned as βI and I respec-
tively, where β is an arbitrarily large number. The complete
procedure is summarized in Algorithm 1.

Algorithm 1 distributed LMMSE (D-LMMSE) algorithm
For each antenna acting as a central node rC repeat
1. Compute ĥc and Cc

e by using (10) and (11).

2. Share estimates with |N | neighbors as explained above.

3. Using steps 1&2, construct {Rhr}|N |r=1 and {Cr
e}
|N |
r=1.

4. Update ĥc and Cc
e using (13) -(14).

5. Repeat steps 2-4, D times whereD is the maximum num-
ber of iterations and then output ĥC = ĥc(1 : L).

Remarks: The recursive sharing enables each node in the ar-
ray to utilize the correlated observations from distant nodes.
A simple loose upper bound on maximum number of iter-
ations is given by D ≤

√
Np/2− 1/4 − 1/2, which en-

sures that each antenna receives information from every other
antenna in the array. The actual value of D also depends
on the degree of correlations among antennas and is far less
than given by the bound (see Fig. 3, where convergence is
achieved in 2-3 iterations). Moreover, the proposed algorithm
has the advantage of low communication and low computa-
tion at each node as compared to the optimal solution.

0 5 10 15 20
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100

SNR (dB)

No sharing

D=1

D=2

D=3

0 2 4 6 8 10

100

101

# of iterations

M
SE

LS

L-LMMSE

D-LMMSE

O-LMMSE

Fig. 3: Convergence of distributed algorithm.

5. SIMULATION RESULTS

We adopt the channel model in (1) with symmetric spatial cor-
relation matrix of [15] whose parameters are φ = π/3, θ =
3π/8, σ = π/12 and ξ = π/36 which represent mean hor-
izontal angle of departure (AoD), mean vertical AoD, stan-
dard deviation of horizontal and vertical AoD respectively.
For the channel taps, we use an exponentially decaying PDP
E{|hr(τ)|2} = e−τ . Other parameters are described in the
Table 1, where λ represents the carrier frequency wave length.

Parameter Value
Array dimensions (My ×Nx) 5×5
Array element spacing dx, dy 0.3λ, 0.5λ
Number of OFDM sub-carriers (N) 256
Number of pilots (K) 32
Signal constellation modulation 4-QAM
Channel length (L) 8

Table 1: Parameters for simulation

The performance of different algorithms namely, the
localized, the optimal, distributed LMMSE and LS is as-
sessed by computing the MSE performance criteria: MSE =
1
ν

∑ν
i=1 ‖hi − ĥi‖2 where, hi and ĥi are true and estimated

CIR vectors of size NpL× 1 at ith trial and ν represent total
number of trials. We used ν =100 in our simulations.

To show convergence of distributed algorithm, the MSE
is plotted against (i) the number of iterations D at fixed SNR
of 0 dB and (ii) both SNR and D in Fig. 3. As can be seen,
the MSE of proposed algorithm decreases exponentially dur-
ing each step of iteration because each node utilizes corre-
lated observations from distant nodes to improve its estimate.
Moreover, the algorithm converges to near optimal solution in
just 2-3 iterations.

The MSE performance of different algorithms is shown
in Fig. 4 over the SNR range of 0-20 dB. It is clear that O-
LMMSE is better than L-LMMSE as the later doesn’t make
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Fig. 4: MSE performance of different algorithms.

use of channel spatial correlations. However, the proposed
algorithm is able to achieve near optimal performance.

6. CONCLUSIONS

Channel estimation is very crucial in massive MIMO sys-
tems where conventional techniques of MIMO systems can-
not be employed due to several limitations. We proposed a
distributed LMMSE algorithm for uplink channel estimation.
By relying on coordination among neighboring antennas, the
proposed algorithm is very much tractable and attains near
optimal solution at significantly low complexity.
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