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ABSTRACT
Approximate Bayesian computation (ABC) filtration of state-
space models replaces popular particle filters in cases where
the observation models (i.e. likelihoods) are either compu-
tationally too demanding or completely intractable, but it is
still possible to simulate from them. These sequential Monte
Carlo methods evaluate importance weights based on the dis-
tance between the true observation and the simulated pseudo-
observations. The paper proposes a new adaptive method
consisting of probability kernel-based evaluation of impor-
tance weights with online determination of kernel scale. It
is shown that the resulting algorithm achieves performance
close to particle filters in the case of well-specified models,
and outperforms generic particle filters and state-of-art ABC
filters under heavy-tailed noise and model misspecification.

Index Terms— Approximate Bayesian computation,
ABC, filtration, adaptive kernels

1. INTRODUCTION

In many applications we are interested in a sequential estima-
tion of a discrete-time state-space model with hidden states
{Xn}n=1,2,... and observations {Yn}n=1,2,... given by

Xn|(Xn−1 = xn−1) ∼ f(xn|xn−1) (1)
Yn|(Xn = xn) ∼ g(yn|xn), (2)

where f and g are known nonlinear scalar or multivariate
functions, and the prior X0 ∼ π(x0). Such models abound
in econometrics, target tracking, computer vision, computa-
tional biology and many other fields, see, e.g. [1, 2].

The optimal Bayesian filtering aims to sequentially infer
the distribution π(x1:n|y1:n) from observations y1, . . . , yn by
virtue of the Bayes’ theorem

π(x0:n|y1:n) ∝ π(x0)

n∏
k=1

g(yk|xk)f(xk|xk−1). (3)

However, except for a limited number of rather special
cases, the posterior distribution is analytically intractable
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and forces one to resort to approximate inference, mostly
based on Monte Carlo methods [1–3]. Their specific branch
termed particle filters (PFs) approximate the target den-
sity π(x0:n|y1:n) by drawing samples x(i)0:n from convenient
proposal densities qn(xn|yn, x1:n−1) and representing the
target density by {W (i)

n , X
(i)
n }i=1,...,I , where the importance

weights take values in the unit I-simplex. The Bayesian
update (3) then recursively incorporates new observations yn,

W (i)
n ∝W (i)

n−1

g
(
yn
∣∣x(i)n ) f (x(i)n ∣∣x(i)n−1

)
q
(
x
(i)
n

∣∣yn, x(i)n−1

) . (4)

A subsequent resampling follows to prevent particle depletion
[3]. There remains to choose qn(xn|yn, xn−1). Often the
density f(xn|xn−1) is a reasonable choice, resulting in the
so-called bootstrap filter [3, 4].

In certain cases the observation model (2) is either too
complex to be evaluated analytically or numerically (but it
is still possible to sample from it by plugging the state),
or it is a rather rough approximation of the true model.
In such situations, the particle filter can be superseded by
the so-called approximate Bayesian computation (ABC) fil-
ter [5]. The ABC methods avoid evaluation of the observation
model likelihood (2) by matching observations with simu-
lated pseudo-observations (see [6, 7] for recent reviews). The
resulting approximation of posterior distribution (3) is based
upon defining a probability distribution on an extended state
space with the pseudo-observations lying on the data-space
and (usually) distributed according to the true model [8]. The
first SMC filter replacing (4) by its ABC counterpart was
proposed quite recently (2012) by Jasra et al. [5]. Later, Cal-
vet and Czellar [9] proposed its modification, replacing the
uniform kernel by nonuniform kernels with variable kernel
scales.

Inspired by both the original [5] and the improved filter
[9], a new method is proposed in this contribution. It also
exploits probability kernels, but alleviates some restrictions
imposed in [9]. The approximation tolerance is driven by the
required number of pseudo-observations to be covered by a
preset credibility region of the kernel. The resulting filter has
a good performance and stability under heavy-tailed noise.
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2. ABC FILTERS

The ABC filters approximate the target density π(x0:n|y1:n)

with samples x
(i)
n , obtained again from a suitable pro-

posal distribution q(xn|yn, xn−1), that give rise to pseudo-
observations u(i)n ∼ g(yn|x(i)n ) in some sense close to the
true observed yn. This closeness is determined by a kernel
probability density function g̃εn(yn, u

(i)
n ). The approximate

analogue of the posterior distribution (3) has the form [5]

π̃(x0:n|y1:n) = π(x0)

∫
π̃(x1:n, u1:n|y1:n)du1:n

∝ π(x0)

n∏
k=1

[∫
g̃εn(yk, uk)g(yk|xk)duk

]
f(xk|xk−1).

(5)

The resulting ABC filtering algorithm is a sequential impor-
tance resampling (SIR) type Monte Carlo algorithm similar
to the particle filter presented above. The ABC importance
weights update has the form

W (i)
n ∝W (i)

n−1g̃εn

(
yn, u

(i)
n

)
. (6)

Obviously, this basic setting leads to a bootstrap-type filter
with the proposal distribution identified with the state evolu-
tion function.

The original ABC filter of Jasra et al. [5] uses (similarly to
traditional nonsequential ABC methods) the uniform kernel

g̃εn

(
yn, u

(i)
n

)
= 1Aεn,yn

(
u(i)n

)
, (7)

where

Aεn,yn = {u : ρ(u, yn) ≤ εn}, εn > 0. (8)

Here, the metric ρ(u, yn) measures the distance of the
pseudo-observation u from the true observation yn. For
instance, it can be the Manhattan L1 or the Euclidean L2

norm. It is shown in [5] that under fixed ε the presented
ABC filter converges to a biased estimator as the number of
particles N tends to infinity and that the bias itself tends to
zero as εn goes to zero.

The uniform kernel (7) suffers two major drawbacks.
First, its sequential adaptation is mandatory, otherwise with
fixed ε, the filter may abruptly fail if the true observation
yn is an outlier, making the set Aεn,yn empty. Second, the
resulting importance weights are either zero or proportional
to one: the pseudo-observations are either in Aε,yn or not.
The remedy for the first issue consists in presetting a num-
ber α ∈ {1, . . . , I} of particles closest to yn to be always
accepted. Consequently, εn = ρ(u

([α])
n , yn) where u

([α])
n

denotes the pseudo-observation having the αth least distance
from yn. Inspired by nonparametric kernel density estima-
tion, Calvet and Czellar [9] propose to resolve the second

issue and the problem of double convergence in I and εn by
means of probability kernels with scale dependent on I . They
develop a plug-in rule for the choice of kernel scale. Their
approach follows the traditional kernel theory, e.g. [10, Chap.
3], where the merits and drawbacks of presented methods
(including the one adopted in [9]) are discussed.

2.1. Contribution

A new method for determination of particle weights is pro-
posed in this contribution. It is based on probability kernels,
that is (possibly non-normalized) symmetric probability den-
sity functions centered at zero and with a scale parameter εn.
This definition of kernels is much less restrictive than the one
assumed in the kernel density estimation framework adopted
by Calvet and Czellar [9, Assumption 1], imposing additional
restrictions on the existence of the first two moments, and
thus ruling out some popular and computationally attractive
kernels like the Cauchy one. The optimal kernel scale is de-
termined each time step based on the preset filter tolerance.
Under stable behavior of observations (symmetric noise cen-
tered at zero), the scale shrinks, reducing the estimator bias.
If outliers occur, the scale immediately grows, suppressing
the influence of such observations. Examples demonstrate,
that particularly the computationally appealing heavy-tailed
Cauchy kernel leads to good filtering performance.

3. PROPOSED ADAPTIVE ABC FILTER

Suppose that a functional form of a probability kernel (a sym-
metric probability density function with some scale εn) is
chosen and time n is fixed. The core idea of the proposed
method is to adjust its scale parameter εn so that the ker-
nel p-credibility region (i.e. the p-highest probability density
region) covers exactly α ∈ {1, . . . , N} pseudo-observations
u
(i)
n generated by particles x(i)n . This means to find εn such

that the αth least distant pseudo-observation u([α])n is the (p+
1)/2 quantile of the kernel. In statistics, one typically chooses
p ≥ 0.95.

After the user sets the tuning parameters p and α, sequen-
tial computation of the kernel scale involves (i) computation
of distances ||u(i)n , yn||, (ii) finding u([α])n , the αth least dis-
tant pseudo-observation, (iii) computation of εn. The result-
ing scale is then directly plugged in the kernel, and the update
of importance weights (6) is performed. Algorithm 1 summa-
rizes the proposed adaptive filter.

The determination of the scale εn is in many cases of stan-
dard statistical distributions quite easy and computationally
non-intensive. Below, two particularly appealing examples
are given: the popular Gaussian kernel and the Cauchy kernel.
It will be demonstrated later in simulated examples that the
latter brings additional filter robustness due to its very heavy
tails.
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Gaussian kernel

g̃εn

(
yn, u

(i)
n

)
∝ exp


∣∣∣u(i)n − yn∣∣∣2

ε2n

 (9)

with εn =

∣∣∣u([α])n − yn
∣∣∣

Φ−1
(
p+1
2

) , (10)

where Φ−1 is the quantile (inverse cumulative distribution)
function of N (0, 1).

Cauchy kernel

g̃n,εn

(
yn, u

(i)
n

)
∝

1 +

∣∣∣u(i)n − yn∣∣∣2
ε2n


−1

(11)

with εn =

∣∣∣u([α])n − yn
∣∣∣

tan(πp)
. (12)

3.1. Properties

Thorough analysis of the proposed ABC filter with kernel
adaptation is beyond the scope and available extent of this
contribution. However, it is immediately possible to recog-
nize certain important properties:
Stability under model misspecificaton (outliers, heavy-tailed
noise) – Under stable conditions, the pseudo-observations
concentrate and the kernel scale shrinks. However, if an out-
lier occurs, the resulting scale becomes high in order to cover
the required number of particles, which makes the associated
weights to follow a flatter distribution (Fig. 1). This prevents
the particle weights from degeneration, which would usually
occur in the generic particle filter. On the other hand, in-
formative outliers can be taken into account with a suitable
kernel shape.
Filtration with intractable/computationally demanding obser-
vation likelihoods – a design property of ABC methods [6].
Straightforward application to higher dimensions – often, it
is easy to evaluate credibility regions of standard multivariate
statistical distributions. This task is not so straightforward in
KDE-based methods [10].
Relatively cheap computations with popular kernels – e.g., in
the case of the Cauchy kernel it is necessary to (i) find the
αth least distant particle (search inN ×1 array), (ii) calculate
the scale εn (evaluation of tangent function) and (iii) evalua-
tion of particles weights as Cauchy kernel values (no special
functions). Thus the complexity can be lower than in particle
filters and it is comparable to Jasra’s filter (which is a special
case of the proposed filter).

−3 −2 −1 0 1 2 3

Fig. 1. Kernel adaptation. If the pseudo-observations u(i)n
(blue ticks) are close to the true observation yn = 0 (solid red
line), a narrow kernel (solid green line) covers the required
number of them. If the true observation is an outlier yn = 2
(dashed red line), the kernel must be very flat (dashed green).

Algorithm 1 ABC FILTER WITH ADAPTIVE KERNEL

Sample initial particles x(i)0 , i = 1, . . . , I from a suitable prior
distribution π(x0), assign uniform initial importance weights
W

(i)
0 = 1/I . Choose a kernel function g̃εn , e.g. (9) or (11),

set the credibility region level p and the associated number of
particles α to be covered by it.
For n = 1, 2, . . . do:
1. Obtain observation yn.
2. Propagate particles x(i)n ∼ qn(xn|yn, xn−1).
3. Simulate pseudo-observation u(i)n ∼ gn

(
yn
∣∣x(i)n ).

4. Kernel adaptation:

(a) Calculate distances
∣∣∣∣u(i)n − yn∣∣∣∣.

(b) Find u([α])n , the αth least distant pseudo-observation.
(c) Calculate kernel scale εn, e.g. (10) or (12).

5. Update weights W (n)
n ∝W (i)

n−1g̃εn

(
yn, u

(i)
n

)
.

6. Resample if the effective sample size drops below a spec-
ified threshold.

4. EXAMPLES

Two following two examples demonstrate performance of the
proposed method. First, a state-space model with nonlin-
ear state and linear observation equations with known nor-
mal noise terms is adopted. This setting, ideal for the parti-
cle filters, demonstrates that the proposed adaptive ABC filter
performance is only very slightly worse. The second exam-
ple considers a completely nonlinear multimodal state-space
model with a heavy-tailed observation noise and model mis-
specification. The performance measure is the mean squared
error (MSE),

MSE =
1

N

N∑
n=1

(x̂n − xn)2

=
1

N

N∑
n=1

(
I∑
i=1

W (i)
n x(i)n − xn

)2

. (13)
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Both examples exploit a one-dimensional state-space
model popular in particle filtering literature [11–13], which
we simplify in the first example. Three ABC filters are em-
ployed: the proposed kernel-based filters with the Gaussian
and Cauchy kernel, and the original filter of Jasra et al. [5].
The ABC filter of Calvet and Czellar [9] with the Gaussian
and quasi-Cauchy kernels were assessed as well; for their
lower performance only MSE values are reported. A parti-
cle filter is used for comparison with the ABC filters. All
methods are “off-the-shelf”, i.e. without any additional tun-
ing. They are all bootstrap filters with 1000 particles. The
multinomial resampling is performed each n, followed by a
random walk with variance 0.5. The absolute value |u(i)n −yn|
serves as the distance function. The ABC credibility intervals
with p = 0.95 cover 300 pseudo-observations. All filters are
initialized with identical set of particles sampled from the
uniform distribution U(−100, 100).

The commented source code is freely available on the
website http://diffest.utia.cas.cz.

Example 1: Linear observation model with normal noise

We consider a state-space model of the form

xn =
xn−1

2
+

25xn−1

1 + x2n−1

+ 8 cos(1.2n) + vn,

yn = xn + wn,

initialized from x0 = 0. The series have 100 samples
(n = 1, . . . , 100). vn and wn are independent identically
distributed zero-mean normal noise variables with standard
deviations 1 and 10, respectively; the realizations of the ob-
servation noise are depicted in Figure 2.

Figure 3 depicts the evolutions of estimation residues
x̂n − xn and the associated final MSE. The results indicate
that the proposed adaptive ABC filter outperforms the orig-
inal ABC filter of Jasra et al. and, moreover, that it attains
MSE performance close to the bootstrap particle filter with
both kernels. Both kernels exhibit very similar behavior, the
Cauchy kernel is slightly less sensitive to the noise. The ABC
filter of Calvet and Czellar [9] with the Gaussian and quasi-
Cauchy kernels attains MSEs 36.7 and 110.6, respectively.

Finally, Figure 4 shows evolution of the kernel scales εn.
Apparently, the Cauchy kernel is more stable due to its heavy
tails. A fast adaptation from a very flat prior information is
apparent in both cases.

Example 2: Nonlinear model with Cauchy noise

The second example deals with the popular completely non-
linear multimodal state-space model of the form

xn =
xn−1

2
+

25xn−1

1 + x2n−1

+ 8 cos(1.2n) + vn,

yn =
x2n
20

+ wn,

0 20 40 60 80 100

n

−8
−6
−4
−2

0
2
4
6
8

N
oi

se
va

lu
e

−8 −6 −4 −2 0 2 4 6 8

Noise distribution

0

2

4

6

8

10

12

14

Fig. 2. Example 1: Evolution of noise realizations and their
histogram.
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Fig. 3. Example 1: Evolution of estimation residues x̂n − xn.

initialized in the same way as in the previous example with the
exception that wn has a Cauchy distribution with zero mode
and a unit scale. Figure 5 depicts evolution of this heavy-
tailed noise: clearly, there are several outliers in the series.

Figure 6 shows the evolution of estimation residues of all
four filters. The Cauchy-kernel ABC filter reaches the best re-
sults with reasonably stable estimates and fast recovery from
outliers, its MSE=29.9. The Gaussian kernel is more sensi-
tive, but it also reaches reasonable results. On the other hand,
the original ABC filter exhibits degraded performance due to
its weighting strategy. As expected, the off-the-shelf boot-
strap particle filter suffers from model misspecification and
outliers. Finally, the filter of Calvet and Czellar [9] with the
Gaussian and quasi-Cauchy kernels has MSE values 73.3 and
122.7, respectively.

Figure 7 shows fast adaptation of kernel scales εn in both
kernels. The spikes correlate well with the departures from
the expected observation values. The filters are stabilized dur-
ing these events due higher scale leading to lower difference
in weights.

Conclusion
A novel adaptive approximate Bayesian computation method
for filtration of nonlinear state-space models with computa-
tionally demanding or intractable likelihoods was proposed.
Its performance is close to the particle filters in settings where
the latter can be used (and dominate). However, in difficult
scenarios where the particle filter struggles, the ABC method
provides a reasonable estimation accuracy and stability.
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Fig. 4. Example 1: Evolution of kernel scales εn of the Gaus-
sian and Cauchy kernels, respectively.
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Fig. 5. Example 2: Evolution of noise realizations and their
histogram.

Future works include the topics of adaptive proposal
distributions and thorough theoretical and experimental as-
sessment of performance and convergence properties of the
method. Also, recent results of Bornn et al. [14] indicating
that multiple pseudo-observations do not necessarily improve
efficiency of certain ABC algorithms deserve our focus.
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[1] O. Cappé, E. Moulines, and T. Rydén, Inference In Hid-
den Markov Models, Springer, New York, 2005.

[2] J. Durbin and S. J. Koopman, Time Series Analysis by
State Space Methods, Oxford University Press, 2012.

[3] A. Doucet and A. Johansen, “A tutorial on particle fil-
tering and smoothing: Fifteen years later,” in Oxford
Handbook of Nonlinear Filtering, 2011, pp. 656–704.

[4] J. Cornebise, E. Moulines, and J. Olsson, “Adaptive
methods for sequential importance sampling with appli-
cation to state space models,” Statistics and Computing,
vol. 18, no. 4, pp. 461–480, Aug. 2008.

[5] A. Jasra, S.S. Singh, J.S. Martin, and E. McCoy, “Filter-
ing via approximate Bayesian computation,” Statistics
and Computing, vol. 22, no. 6, pp. 1223-1237, 2012.

[6] J. M. Marin, P. Pudlo, C. P. Robert, and R. J. Ry-
der, “Approximate Bayesian computational methods,”
Statistics and Computing, vol. 22, no. 6, pp. 1167–
1180, 2012.

[7] P. Green, K. Łatuszynski, M. Pereyra, and C. P. Robert,
“Bayesian computation: A perspective on the current
state, and sampling backwards and forwards,” Statistics
and Computing, to appear.

0 20 40 60 80 100
−30
−20
−10

0
10
20
30

R
es

id
ue

ABC Gaussian kernel (MSE=48.8)

0 20 40 60 80 100
−30
−20
−10

0
10
20
30

ABC Cauchy kernel (MSE=29.9)

0 20 40 60 80 100

n

−30
−20
−10

0
10
20
30

R
es

id
ue

ABC (Jasra et al.) (MSE=70.4)

0 20 40 60 80 100

n

−30
−20
−10

0
10
20
30

Particle filter (MSE=126.2)

Fig. 6. Example 2: Evolution of estimation residues x̂n − xn.

0 20 40 60 80 100

n

0

5

10

15

20

25

30

ε

Gaussian
Cauchy

Fig. 7. Example 2: Evolution of kernel scales εn of the Gaus-
sian and Cauchy kernels, respectively.

[8] A. Jasra, N. Kantas, and E. Ehrlich, “Approximate in-
ference for observation-driven time series models with
intractable likelihoods,” ACM Transactions on Model-
ing and Computer Simulation, vol. 24, no. 3, pp. 1–25,
2014.

[9] L. Calvet and V. Czellar, “Accurate methods for ap-
proximate Bayesian computation filtering,” Journal of
Financial Econometrics, July 2014. (to appear)

[10] B. W. Silverman, “Density Estimation for Statistics and
Data Analysis,” Monographs on Statistics and Applied
Probability. Chapman & Hall/CRC, 1986.
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