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ABSTRACT

Adaptive feedback cancellation (AFC) algorithms are used
to solve the problem of acoustic feedback, but, frequently,
they do not address the fundamental problem of loudspeaker
and source signal correlation, leading to an estimation bias
if standard adaptive filtering methods are used. Loudspeaker
and source signal prefiltering via the prediction-error method
(PEM) can address this problem. In addition to this, the use
of a frequency-domain Kalman filter (FDKF) is an appealing
tool for the estimation of the adaptive feedback canceler, given
the advantages it offers over other common techniques, such
as Wiener filtering. In this paper, we derive an algorithm em-
ploying a PEM-based prewhitening and a frequency-domain
Kalman filter (PEM-FDKF) for AFC. We demonstrate its im-
proved performance when compared with standard frequency-
domain adaptive filter (FDAF) algorithms, in terms of reduced
estimation error, achievable amplification and sound quality.

Index Terms— Adaptive feedback cancellation (AFC),
prediction-error method (PEM), Kalman filter, source signal
modeling

1. INTRODUCTION

Acoustic feedback represents a detrimental phenomenon that
can affect different kinds of acoustic systems. The feedback
problem occurs when there exists an (unwanted) acoustic
coupling between loudspeaker(s) and microphone(s) of an
acoustic system, causing the transition from an open-loop to a
closed-loop system. Closed-loop systems can become unstable
even when the different components within the loop are indi-
vidually stable and the result of such instability, when dealing
with acoustic signals, is the well-known howling artifact. This
artifact can often lead to perceptual annoyance due to the dis-
tortions produced on the desired signal and must therefore be
limited. Applications reducing these artifacts are found, e. g.,
in sound reinforcement systems [1] and hearing aids [2].
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Fig. 1. General adaptive feedback cancellation.
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A useful approach to tackle the feedback problem is based
on adaptive filtering, leading to the so-called adaptive feed-
back cancellation (AFC), see Fig. 1. The scheme in the figure
depicts a typical acoustic scenario affected by feedback where
the microphone signal y(t), ¢ being the discrete-time index, is
given by the sum of the source signal v(t), i.e. the signal to
be amplified, and the unwanted feedback component x(¢). In
the AFC, the adaptive filter f (t) estimates, at time ¢, the linear
and of finite order nyr (assumed to be known) true acoustic
feedback path f = [fy f1 fnp—1]T to remove the
prediction §[t|f(t)] of 2(t) from the microphone signal y(t).
The closed-loop transfer function (TF) C'rr(q) of the system,
i.e. from v(t) to u(t), is easily found as:

G(q)
1-Glq) [Fla) - F(g)]

where ¢~ represents the delay operator used to define the
polynomial TFs G(q), F(q) and F(q) of the forward path,
the feedback path and the estimated feedback path, respec-
tively. The Nyquist stability criterion [1] defines the maximum
(frequency-dependent) gain the system can sustain without be-
coming unstable. From Eq. (1) we see that if the estimate F'(q)
approximates well enough (ideally equals) F'(q), the closed-
loop frequency response approximates the forward path G(q),
i. e. the open-loop frequency response.

Crr(q) =

) ey
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Unfortunately, classic adaptive filter theory is not optimal
for closed-loop systems, because of the correlation existing be-
tween the reference signal and the noise signal (represented, in
AFC, by loudspeaker and source signal, respectively) leading
to an estimation bias if standard adaptive filtering methods are
used. Decorrelation between the loudspeaker and source sig-
nal can be achieved using a whitening prefilter, estimated via
the prediction-error method (PEM), on both of the signals [1].
Additionally, setting some of the critical parameters, such as
the stepsize for the AFC update, is not always a trivial task [3];
for instance, compared to other common adaptive filtering pro-
cedures, such as adaptive echo cancellation (AEC), the choice
of the stepsize in a feedback system is much more involved,
since the adaptive filter has to operate in a continuous so-called
“double-talk” situation [1].

This paper presents an AFC algorithm capable of dealing
with such problems by means of a PEM-based prewhitening
stage in combination with an optimal feedback canceler, esti-
mated using a frequency-domain Kalman filter (FDKF). The
approach allows to address both the reduction of the estima-
tion bias, caused by the correlation between loudspeaker and
source signal, and the choice of the stepsize, which is tuned
adaptively.

The paper is structured as follows: in Section 2, we give
a brief description of different definable minimization crite-
ria for AFC; in Section 3, we show how to exploit Kalman-
filter theory, using a “slow” time-variability assumption for the
feedback path, to adaptively estimate the feedback canceler;
in Section 4, we show some simulation results that highlight
the faster convergence of the new algorithm as well as the im-
proved stability; finally, the conclusions are given in Section 5.

2. DIFFERENT MINIMIZATION CRITERIA IN
ADAPTIVE FEEDBACK CANCELLATION

The extended version of the AFC in Fig. 1 that we are going to
use is shown in Fig. 2. Time variability is now assumed for all
the polynomial TFs, e.g. F'(q) — F(q,t). This AFC exploits
the benefits deriving from the source signal modeling through a
PEM-based prewhitening [1], which strongly reduces the cor-
relation between loudspeaker and source signal. This reduced
correlation allows to lower the bias of the feedback path esti-
mate and hence to obtain a more efficient feedback cancella-
tion. Some new quantities are introduced in Fig. 2: H(q,t) is
assumed to be a monic, inversely stable, time-varying model of
the source signal v(t) fed with the white noise sequence e(t);
Ya[t, &(t)] and u,[t, &(t)] are, respectively, the microphone and
loudspeaker signal filtered with the estimated inverse source
signal model A(q,t) = H~(q,t), and, finally, e[t, a(t), £(¢)]
is the prediction error signal. For the sake of clarity, the depen-
dencies of the signals on 4(t), and f(¢) will be dropped.

The impulse response (IR) f(¢) is assumed to completely
model the feedback path so that the microphone signal y(t)
can be expressed as the sum of the source signal v(¢) and the
feedback signal x(¢), i.e. y(t) = o(t) + z(t) = v(t) +
£T(t)u(t), with the loudspeaker signal vector defined as
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Fig. 2. Complete adaptive feedback cancellation algorithm.

u(t) =[u(t) wu(t-1) u(t —np + 1)]T. An alterna-
tive representation of the filtering operation can be given using
the polynomial TF F(q,t), i.e. £¥ (t)u(t) = F(q,t)u(t).

To estimate the unknown vector f(¢), different optimiza-
tion criteria can be defined. Introducing E {-} as expectation
operator, a common criterion, widely used in adaptive filter
theory [3], is given as

win® {|y(0) - " 0uo)| '} @

HO)
where f(¢) minimizes the power of the error signal d(t). It can
be shown that the solution of the estimation problem in Eq. (2)
is unbiased if E {u(¢)v(t)} = 0, which is not the common case
in AFC, due to the closed-loop nature of the system [2].

The bias of the estimate can be reduced, ideally eliminated
[1], by modifying Eq. (2) into

minE {
£(t)
where both the loudspeaker signal vector and the microphone

signal are prefiltered via fl(q, t), the estimated inverse of the
source signal model H(q, t), i.e.

ya(t) — " (), (t)\z} : 3

A(g, t)u(t)
u,(t) = : (4a)
Ag, t)u(t —np +1)
ya(t) = A(g, )y(1). (4b)

The argument of the expected value in Eq. (3) can be seen to
match the power of the prediction error signal £(t), cf. Fig. 2.
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A less widespread optimization criterion, e. g. used in the
work by Enzner and Vary [4], considers the mean-square error
(MSE) between the signals v(t) and d(t), i.e.

lggllE{lv(t) —d)°}, )

and, in AFC, the choice of this criterion is rather appealing
considering the very definition of the feedback cancellation
goal, i. e. the reproduction of the amplified source signal in the
loudspeaker, without distortions due to the feedback coupling
between u(t) and y(t). Minimizing the difference between the
error signal d(t) and the (unknown) source signal v(t), indeed
leads to the set goal in a more intuitive way, when compared
with the other criteria. Unfortunately, the statistical behavior of
the resulting estimate has been studied only for the AEC case
and further analysis is needed for an extension to the AFC case.

Finally, a different and straightforward criterion considers
the MSE between the true and estimated IR

N 2
rpinE{Hf(t) —f(t)H } )
£(t)

Such a criterion is motivated by statistical properties [5,6] and,
similar to the criterion in Eq. (5), corresponds to very intuitive
condition. A modified version of the optimization problem in
Eq. (6) is the one we are aiming to solve with the algorithm
proposed in this paper, which will be introduced in Section 3.

It is important to notice that both the criteria in Eqgs. (5)
and (6) require a shift from a deterministic to a stochastic
framework, since both rely on the use of unknown quantities,
respectively v(¢) and f(¢). Therefore, these quantities should
be treated as two stochastic processes described by some avail-
able prior knowledge; in particular, for the case of f(t), this
leads to a Bayesian framework.

A common model for the source signal v(¢) is a ran-
dom process with zero mean and autocorrelation @y (t,n) =
E {v(t)v(t +n)} [4,5]. A similar model could be chosen for
the unknown feedback path £(¢). However, it is reasonable to
assume that the dynamical behavior of the feedback path is
characterized by smooth transitions; therefore, we could use a
less erratic model than a simple random vector process. The
same idea was applied in AEC [4], where the “slow” echo path
variability was modeled by means of a random walk, i.e. a
first-order Markov process. The inclusion of this model in the
optimization problem defined in Eq. (6) leads to the derivation
of a solution based on the Kalman filter.

3. PEM-BASED FREQUENCY-DOMAIN KALMAN
FILTER (PEM-FDKF)

As mentioned in the previous section, the estimation of the un-
known feedback path can be tackled using an approach similar
to that proposed by Enzner and Vary [4] for AEC, where the
echo path is modeled using a first-order Markov model and
the estimation process is carried out via a frequency-domain
Kalman filter (FDKF) with some additional simplifications.
However, some changes must be introduced in order to adapt
such a framework to AFC. In particular, the previously dis-
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cussed correlation between loudspeaker and source signal
must be reduced, or eliminated, by means of a PEM-based
prewhitening filter addressing such an issue. Although the pro-
posed algorithm differs from the standard PEM, the acronym
PEM was retained since the update equations of the Kalman
filter rely on the frequency-domain version of £(¢).

The choice of a frequency-domain approach has several ad-
vantages: not only does it allow a lower computational com-
plexity, it also reinforces the role of the prefilters due to the
good (although not perfect) decorrelation properties of the dis-
crete Fourier transform [7]. Additionally, the formulation of
the problem as a Kalman filter modeling allows to optimally
estimate the frequency-dependent stepsize of the adaptive pro-
cedure [4], leading to a significantly improved convergence.

To correctly formulate the problem in the frequency do-
main [7], we must first move from the discrete time ¢ to the dis-
crete time-frame index & and introduce the discrete frequency
index [. This allows to introduce the several frame-based quan-
tities playing a role in the model, starting from the M -samples
loudspeaker signal frame at time k£ € Z,

u(k) = [u(kR — M + 1) uwkR—1) u(kR)]", ()

where R denotes the frame shift. Following a common ap-
proach found in literature [2, 5], the model H(q,t) generat-
ing the source signal v(¢) is assumed to be time-varying and
autoregressive (AR); the AR model coefficients fl(k) are then
estimated using the Levinson-Durbin algorithm [3, pp. 254-
264]. Using the estimate A(q,t — 1), the prefiltered version of
the loudspeaker signal frame is defined as

A(g,t — Du(kR)
u, (k) = : (82)

Ag,t — l)u(}cR - M+1)
=[ua(kR—M+1) ... ug(kR—1) uq(kR)]". (8b)

The frequency-domain version of the prefiltered loud-
speaker signal can be expressed by introducing the discrete
Fourier transform matrix Fy; of size M x M and deriving the
associated diagonal matrix via the diag{-} operator

U, (k) = diag {Fmua(k)}. )

The frequency-domain version of the feedback path f(¢)
requires a frame-based representation as well, and to do so we
need to assume the finite IR (FIR) nature of f(¢):

f(k) = [f(07 k) f(lv k)
F(k) = Fu (f((f)) .

The parameters R and M should be chosen properly, taking
into consideration the length of the true feedback path; a rea-
sonable choiceis R = np and M = 2R [7,8].

Finally, we introduce the R-samples prefiltered micro-
phone signal and source signal frame at time k € Z, i.e.

f(M—R-1,k)]"  (10a)

(10b)

Yo(k) = [ya(kR—R+1) ... ya(kR—1) ya(kR)]" (11a)
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e(k) =[e(kR— R+1) e(kR—1) e(kR)]", (11b)

and their corresponding frequency-domain versions:
Ya(k) = FuQy, (k)
E(k) = FuQe(k),

(12a)
(12b)

with Q = (0 IR) T being the projection matrix of size M x R
to be used together with Fy; to obtain the suitable frequency
domain versions of y, (k) and e(k).

From the equations introduced so far, we can combine a
linear model for Y, (k) together with the Markov model for
the feedback path, and define the following state-space repre-
sentation:

F(k+1)= A F(k)+ N(k)
Yau(k) = Ca(k)F (k) + E(),

(13a)
(13b)

where C, (k) = F\QQTFy U, (k) is the linear transforma-
tion of U, (k) allowing to correctly compute the linear con-
volution between u, (k) and f(k), N(k) is the noise process
representing the unpredictability of the feedback path and A is
the transition factor accounting for the time-variability of the
feedback path model [4]. The estimation of N (k) is based on
the model equation (13a) and exploits the assumption that the
feedback path statistics has a much slower rate of change than
the source signal statistics [4]. The value of the transition factor
A should be chosentobe 0 <« A < 1[4,9].

The state space-model in Eq. (13) employs prefiltered vari-
ables and, in this way, approximates the assumed decorrela-
tion between loudspeaker and source signal; this assumption is
needed when using a Kalman filter to estimate F (k). Kalman-
filter theory allows to obtain a linear minimum MSE (MMSE)
estimate of the state F'(k) given the model defined in Eq. (13),
i.e. solving the optimization problem [6, ch. 13]

min JE{HF(k)—F*(k)Hz}, (14)

Bt (k)

similar to the Bayesian optimization problem in Eq. (6).

For implementation purposes, we use the same approxima-
tions introduced by Enzner and Vary [4], allowing to address
both the problem of high computational complexity and ill-
posedness of the solution via diagonal operations, to modify
the standard FDKF expression accordingly. The complete set
of equations describing the algorithm update is as follows:

Fk+1)=A-F (k) (152)
Pk+1) =A% - PT(k) + O, (k) (15b)
(k) = F(k) + Fu(In — QQT)FR K(k)
xFuQ [y, (k) - QFL U(F(k)]  (150)
£(k)
Pt (k) = [IM - %K(kma(m} P(k) (154)

K(k) = P(R)U (k) [Ua (PR UL () + Tech)]
(15e)

where P (k) is the frequency-domain estimation error covari-
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ance matrix, K(k) is the frequency-domain Kalman gain,
the superscript T indicates a posteriori estimates and, finally,
W..(k) and ¥, (k) are the estimated covariance matrices
of E(k) and N(k) [4], respectively. More details about the
initialization of the algorithm parameters are provided in
the following section. As mentioned earlier, the use of the
frequency-domain prediction error £(k), cf. Eq. (15¢), moti-
vates the name of the proposed algorithm.

4. SIMULATION RESULTS

We now show some simulation results in order to assess the
performance of the proposed algorithm. The algorithms (novel
and baselines) are compared in terms of three measures, as-
sessing the estimation error, the achievable amplification that
they can provide, and the sound quality.

The first measure is the misadjustment (Mis), defined as
the normalized distance between the true and estimated IR:

Mis(k)[dB] = 201ogy, [|£(k) — £(k) I /[IE ()] (16)

The second measure is the added stable gain (ASG) which
is based on the so-called maximum stable gain (MSGQG), i. e. the
maximum gain achievable at a given time without compromis-
ing the system stability and assuming a spectrally flat G(k, 1),
and on the Kygq, i. €. the maximum stable gain of the system
when no feedback canceller is included:

ASG(k) = MSG(k) — Kusc. (17)

Finally, the sound quality is assessed by means of an ob-
jective measure called frequency-weighted log-spectral signal
distortion (SD), a distance measure proven to correlate quite
well with subjective data in feedback cancellation tasks [10].

As baseline algorithms, we use two frequency-domain
adaptive filter (FDAF) feedback cancellation algorithms based
on the normalized least mean squares (NLMS) algorithm,
with and without the inclusion of prefilters (PEM-FDAF [8]
and FDAF [7], respectively). The two baseline algorithms are
compared with the proposed FDKF implementations, with
and without the prefiltering stage (PEM-FDKF and FDKF,
respectively). The source signal v(k) is a clean speech sig-
nal sampled at f; = 8000 Hz while F'(k,[) is taken from a
database of recorded hearing aids feedback paths. The order
of the estimated AR model for v(k) was fixed to 25 and the
constants of the different algorithms are as follows: the NLMS
algorithm step size ;1 = 0.02, the regularization constant
a = 5 x 1075, and the forgetting factor A = 0.85 (used to
recursively calculate the loudspeaker signal power) for both
FDAF and PEM-FDAF. These three parameters are all in-
volved in the calculation of the feedback estimate adopting
a recursive updating procedure. Furthermore, the frame shift
was R = 80 and the FFT size was M = 160. Both FDKF
algorithms use the initialization value P(0) = 5 x 107 2Ty
and a transition factor A = 0.99999.! Although the Markov
model in Eq. (13a) assumes a time-varying feedback path, no

The value of P(0) is chosen from prior knowledge on the amplitude of
the true feedback path (e. g. initial fitting measurements in hearing aids AFC).
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Fig. 3. Mis and ASG performance over time of the different
algorithms for the two tested gains.

time variability was included in the simulations; this was done
to show that the choice of A is not extremely critical.

In the first simulated case, the transfer function G(k,1) is
fixed to a constant gain of 3 dB below the value of the Kysc
(from now on referred to as K;) with an 80-samples delay,
i.e. > R.2 Smaller delays can be achieved using a partitioned-
block frequency domain approach [2]. Mis and ASG are shown
using dotted lines in Fig. 3. The simple FDAF does not work
properly in this case, but including the PEM-based prewhiten-
ing improves the performance by roughly 6 dB for both the
metrics. The FDKF provides slightly better performance than
the FDAF algorithms, by exploiting the good convergence
properties of the Kalman filter. Finally, the PEM-FDKEF re-
turns the best results thanks to the decorrelating properties of
the PEM-based prewhitening.

In the second simulated case, shown with solid lines in
Fig. 3, a similar situation is considered where only the forward
path gain is increased by 15 dB compared to the previous case;
this value is referred to as K in the figure. In such a scenario,
the convergence of the algorithms is sped up and the Mis is
reduced because of the higher gain. However, both FDAF and
PEM-FDAF exhibit prolonged instability, as pointed out by the
negative ASG values. Both FDKF implementations, instead,
retrieve stability rather quickly; namely, in less than 0.5 s.

Finally, the sound quality results, in terms of mean and
maximum SD, are reported in Table 1 for both of the tested
gains. Both FDKF algorithms perform better than the FDAF
algorithms in the two tested scenarios. Again, the PEM-FDKF
returns the best results suggesting that the extremely limited
signal distortion between loudspeaker and source signals also
from an objective point of view.

2The 3 dB margin is usually chosen to avoid audible ringing effects [1].
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Table 1. Mean and maximum SD values of the different algo-
rithms for the two tested gains. In brackets, the results from the
last second of simulation (4-5 s), achieving better convergence.

mean(SD) max(SD)
K K, K K,
FDAF 3.21 3197 (31.53) 8.19 58.92 (42.16)
PEM-FDAF 1.66 227 (2.12) 450 5.98 (4.36)
FDKF 1.46 148 (1.26) 445 4.77(2.15)
PEM-FDKF 1.06 1.23(1.19) 376 5.32(2.04)

5. CONCLUSIONS

In this paper, we have presented a novel algorithm for AFC. By
using a state-space model to represent the time-varying acous-
tic feedback path combined with a PEM-based prewhitening
approach, an approximation of the FDKF was used to provide
an optimal adaptive estimator of the unknown feedback path.

Simulation results have shown the improved performance
exhibited by the presented algorithm compared to two simpler
FDAF implementations, in terms of estimation error, added
stable gain and sound quality.

REFERENCES

[1] T. van Waterschoot and M. Moonen, “Fifty years of acoustic
feedback control: State of the art and future challenges,” Pro-
ceedings of the IEEE, vol. 99, no. 2, pp. 288 -327, Feb 2011.

[2] A. Spriet, G. Rombouts, M. Moonen, and J. Wouters, “Adaptive
feedback cancellation in hearing aids,” Journal of the Franklin
Institute, vol. 343, no. 6, pp. 545 — 573, Aug 2006.

[3]1 S. Haykin, Adaptive filter theory, Prentice-Hall information
and system sciences series. Prentice Hall, 2002.

[4] G. Enzner and P. Vary, “Frequency-domain adaptive kalman
filter for acoustic echo control in hands-free telephones,” Signal
Processing, vol. 86, no. 6, pp. 1140 — 1156, Jun 2006.

[5] T. van Waterschoot, G. Rombouts, and M. Moonen, “Optimally
regularized adaptive filtering algorithms for room acoustic sig-
nal enhancement,” Signal Processing, vol. 88, no. 3, pp. 594 —
611, Mar 2008.

[6] S. Kay, Fundamentals of Statistical Signal Processing: Esti-
mation theory, Fundamentals of Statistical Signal Processing.
Prentice-Hall PTR, 1993.

[7]1 J.J. Shynk, “Frequency-domain and multirate adaptive filter-
ing,” Signal Processing Magazine, IEEE, vol. 9, no. 1, pp. 14
—-37, Jan 1992.

[8] J. M. Gil-Cacho, T. van Waterschoot, M. Moonen, and S. H.
Jensen, “A frequency-domain adaptive filter prediction error
method framework for double-talk-robust acoustic echo cancel-
lation,” Audio, Speech, and Language Processing, IEEE/ACM
Transactions on, vol. 22, no. 12, pp. 2074-2086, Dec 2014.

[9] G. Enzner, “Bayesian inference model for applications of time-
varying acoustic system identification,” in Proc. 18th European
Signal Process. Conf.(EUSIPCO ’10), Aug 2010.

[10] A. Spriet, K. Eneman, M. Moonen, and J. Wouters, “Objective
measures for real-time evaluation of adaptive feedback cancel-
lation algorithms in hearing aids,” in Proc. 16th European Sig-
nal Process. Conf.(EUSIPCO ’08), Aug 2008.



