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ABSTRACT
Even if nonlinear distortion may be deliberately applied to
audio signals for esthetic or technical reasons, it is common
to hear annoying defects in accidentally saturated or amateur-
ishly processed audio—which calls for some means to auto-
matically undo the impairment. This paper proposes an algo-
rithm to blindly identify the nonlinear distortion suffered by
an audio signal and reconstruct its original form. Designed
to deal with memoryless impairments, the model adopted for
the nonlinear distortion is a curve composed of an invertible
sequence of linear segments, capable of following the typical
shape of compressed audio, and whose parameters are easily
interpretable and thus constrainable. The solution builds on
the posterior statistical distribution of the curve parameters
given the degraded signal, and yields perceptually impressive
results for real signals distorted by arbitrary curves.

Index Terms— Nonlinear distortion, Bayesian signal
processing, blind system identification, audio processing

1. INTRODUCTION

A modified signal is said to be distorted whenever its shape
changes (magnitude scaling and time shifting are not distor-
tions). Any distortion which creates new frequency content
is nonlinear, since linear distortion can always be modeled
by magnitude and phase changes imposed on the original fre-
quency content of the signal.

Guitar pedal effects are an artistically motivated exam-
ple of purposeful introduction of nonlinear distortions in au-
dio. Scaling down to less radical procedures, compression is
an essential resource in recording studios for either esthetic
(e.g. enhancement of drum sound) or technical (e.g. signal-
to-noise ratio improvement) reasons. On the other hand, in-
discriminate over-compression and accidental saturation due
to exceeding recording level can produce signals impaired by
audibly annoying defects. Automatic tools to undo the under-
lying distortions would be useful in such circumstances.

A well-explored topic in control engineering [1], nonlin-
ear system identification is still relatively under-researched in
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audio processing. Earlier attempts to tackle nonlinear audio
distortion focused on particular applications where the distor-
tion curve has a well-defined algebraic form, such as in movie
soundtracks [2] or reproduction by horn loudspeakers [3]. Al-
ternative solutions to deal with more general curve shapes ap-
peared in [4] and [5].

The goal of the algorithm proposed herein is to estimate
a generic memoryless distortion in the form of a piecewise
linear model with unknown slopes. The original audio sig-
nal is described by an autoregressive (AR) model [6] of pre-
defined order with unknown coefficients, excited by Gaus-
sian white noise of unknown variance. By specifying an ad-
equate prior for both signal and distortion parameters, one
finds a formula for their posterior distribution, given the dis-
torted signal. Then, a strategy based on Markov-chain Monte
Carlo (MCMC) which combines the Metropolis-Hastings al-
gorithm with Gibbs sampling [7] is employed to draw sam-
ples from the parameters’ posterior, from which the piecewise
linear curve can be inferred. Tests of the proposed solution
performed over artificially distorted real audio signals show
that high-quality estimates for smooth distorting functions are
reached with high probability. Even if not specialized, the
method is applicable to speech signals.

This paper continues in Section 2 with the description of
both signal and distortion models. In Section 3, the parame-
ters’ posterior distribution is deduced. Section 4 explains the
design of the MCMC algorithm that leads to the parameters
estimation. Section 5 demonstrates by simulations the effec-
tiveness of the proposed algorithm in undoing the targeted
nonlinear distortions. Conclusions are drawn in Section 6.

2. SIGNAL AND DISTORTION MODELS

Figure 1 shows the overall model adopted for the memoryless
nonlinear distortion of an audio signal. The leftmost block
represents the generation of the original audio signal in the
form of an autoregressive model in which the all-pole filter
A(z) is excited by the Gaussian white noise sequence en; the
rightmost block represents the distortion curve. The two most
important assumptions of the model are that the AR model
is constant only over short sections of signal, and that the
nonlinear curve is the same throughout the signal. Accord-
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Fig. 1: Audio signal corrupted by memoryless nonlinearity.

ingly, in order to analyze the signal statistical behavior, one
splits the full N -sample signal into B frames of L samples.
Typically, audio signals are considered stationary over a pe-
riod of around 20 ms; thus, the choice of L = 1000 was
adequate for the sampling rate of 44.1 kHz employed in this
work. The original signal sequence xn and the distorted sig-
nal sequence yn are stacked into vectors x and y, with frames
in sub-vectors xj and yj , respectively, for j ∈ {1, . . . , B}.
Analogous definitions apply to e and ej .

2.1. Statistical Model for the Original Signal

In [6] one finds a usual statistical description for audio sig-
nals, briefly reviewed here for the sake of completeness.

For each block j ∈ {1, . . . , B}, the excitation vector ej
is filled by samples of Gaussian white noise with variance
σ2
ej . Then, xj is calculated through the order-P AR-model

recursion xn = en + a1xn−1 + a2xn−2 + . . .+ aPxn−P .
Model parameters aj and σ2

ej can be independently sam-
pled from their respective prior distributions, chosen like in
[6]: for σ2

ej , an Inverted-Gamma distribution with very small
parameters α and β, which approximates its Jeffrey’s non-
informative prior; and for aj , a 0-mean Gaussian distribution
with covariance matrix σ2

aIP , where IP denotes the P × P
identity matrix and σ2

a is sufficiently high w.r.t the usual val-
ues of a to turn the prior non-informative.

In order to simplify the notation for the subsequent anal-
ysis, multivariate variables a and σ2

e are formed by concate-
nating all aj and σ2

ej , respectively, in their temporal order.

2.2. Model for the Distortion

In Figure 1, the degraded signal yj is produced by inputting
the original signal xj to the nonlinear curve f(xn). The op-
tion for parameterizing the inverse curve g(yn) = f−1(yn)
makes the calculation of the likelihood function simpler. This
function is assumed to be: anti-symmetric, which is reason-
able in audio distortions; monotonically increasing to assure
invertibility; and identity in the vicinity of the origin to pre-
vent re-scaling the magnitude of the original signal.

Figure 2 illustrates the model for the inverse curve g(yn).
Without loss of generality, the degraded signal is assumed to
lie within the interval [−1, 1]. The range from 0 to 1 (and
likewise its negative counterpart) is split into M contiguous
intervals of length ∆y = 1/(M + 1). Each interval Ii, i ∈

∆y

y1 = x1 yi yi+1 yM = 1 y

x1

xi

xi+1

xM

x

θi

Fig. 2: Piecewise linear model.

{−M,−1, 1, . . . ,M}, is described by an affine function with
slope mi = tan(θi), with mi > 0 (monotonic increase) and
mi = m−i (anti-symmetry). Starting from m1 = 1 (identity
around the origin) at the positive side, the first point of each
subsequent segment coincides with the last point of the for-
mer (curve continuity). Referring to Figure 2, any point y∗

belonging to the i-th interval is mapped to a point x∗ by

x∗ = gi(y
∗) = xi + sign(y∗)(y∗ − yi)mi, (1)

where x0 = 0, and sign(y∗) denotes the sign of y∗. Noting by
induction that xi = sign(yi)∆y

∑i−1
i=0 mi, one can represent

the undistorted signal vector as

x = u + Rm, (2)

where m = [m2 m3 · · · mM ]T , and both vector u and matrix
R can be computed from elements of y and known constants.

Parameter m can be sampled from a prior distribution.
Recalling restrictions m1 = 1 and m2,m3, . . . ,mM > 0,
one can denote their admissible set by Ω. Since there is no
information about the angular-coefficient values, one can as-
sume a Gaussian prior restricted to this region:

p(m) ∝ e
− 1

2σ2m
mTm

1Ω(m), (3)

where 1Ω(m) is the indicator function of Ω and variance σ2
m

is made sufficiently high to turn the priori non-informative.

3. PARAMETERS’ POSTERIOR DISTRIBUTION

Since the goal of the identification procedure is to find the
most likely model parameters based on the degraded signal
y, the first step in designing the algorithm is to build the pos-
terior distribution p(m,a,σ2

e |y), which according to Bayes’
Theorem is the product of the likelihood function by the pa-
rameters’ prior distribution, up to a multiplicative constant:

p(m,a,σ2
e |y) ∝ p(y|m,a,σ2

e)p(m)p(a,σ2
e). (4)
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The likelihood p(y|m,a,σ2
e) can be calculated by explor-

ing the Gaussianity of en and invoking the formula for ran-
dom variable transformation.

First, a single block xj of the original signal is considered.
To keep notation light, subscript j and conditioning on aj
and σ2

ej will be omitted for a moment. Since xn = en +
∑P
i=1 aixn−i,

p(xn|xn−1, . . . , x1) = pen

(
xn −

P∑

i=1

aixn−i

)
, (5)

for n ≥ P+1. Using induction and (5), one can show that

p(xL, . . . , xP+1|xP , . . . , x1) =

L∏

n=P+1

p(xn|xn−1, . . . , x1) =

(
1

2πσ2
e

)L−P
2

e
− 1

2σ2e
eT e

; (6)

the excitation vector for the current frame e = Ax, where
A is constructed using elements of a. This distribution is
dependent on the first P samples of the current frame, but
since in general L � P , their influence on the whole block
can be disregarded [6], so that

p(xL, . . . , x1) ≈ p(xL, . . . , xP+1|xP , . . . , x1). (7)

Combining together the information of the B blocks and
bringing back the omitted variables, one can write

p(x|a,σ2
e) =

B∏

j=1

p(xj |aj , σ2
ej ) ≈

B∏

j=1

(
1

2πσ2
ej

)L−P
2

e
− 1

2σ2ej

xTj A
T
j Ajxj

. (8)

The “approximation” will be written as an equality hereafter.
Now, using (2), the desired likelihood can be computed:

p(y|m,a,σ2
e) =

M∏

i=1

mNi
i ×

B∏

j=1

(
1

2πσ2
ej

)L−P
2

e
− 1

2σ2ej

(uj+Rjm)TAT
j Aj(uj+Rjm)

, (9)

whereNi is the number of signal samples affected bymi, and
uj and Rj are the blockwise counterparts of u and R.

At last, by replacing (9) and the prior distributions of m,
a and σ2

e in (4), one can obtain an explicit expression for the
posterior distribution:

p(m,a,σ2
e |y) ∝



M∏

i=1

mNi
i

B∏

j=1

1

(σ2
ej )

L−P
2

e
− 1

2σ2ej

(uj+Rjm)TAT
j Aj(uj+Rjm)


×

[
e
− 1

2σ2m
mTm

1Ω(m)

][
e
− 1

2σ2a
aT a
]

B∏

j=1

1

(σ2
ej )

α+1
e
− β

σ2ej


. (10)

4. POSTERIOR SIMULATION VIA MCMC

Even though x can be written as a linear function of param-
eters m, the expression for the posterior is very complicated,
and not guaranteed to be uni-modal—which means that no
simple deterministic maximization algorithm can avoid being
trapped on a local maximum. The solution adopted in this
work is to explore the distribution by drawing samples of it
using an MCMC algorithm, from which the unknown param-
eters are later inferred.

Starting from guesses m(0) and a(0), the Gibbs sampling
algorithm summarized below sequentially draw samples from
the total conditional distributions of the unknown variables.

Algorithm 1 Nonlinear model identification algorithm

1: (m(0),a(0))← Initialize from y
2: for i = 1 to # iterations do
3: σ2(i)

e ∼ p(σ2
e |y,a(i−1),m(i−1))

4: a(i) ∼ p(a|y,σ2(i)

e ,m(i−1))

5: m(i) ∼ p(m|y,a(i),σ2(i)

e )
6: end for

Sampling of AR-model parameters: The conditional
distributions for σ2

e and a are obtained by ignoring the por-
tions of (10) unrelated to them, which results in Inverted-
Gamma for each σ2

ej and Gaussian for each aj—both easily
samplable distributions.

Sampling of nonlinear distortion parameters: By ig-
noring the portions of (10) unrelated to m, its conditional dis-
tribution is found to be

p(m|y,a,σ2
e) ∝

M∏

i=1

mNi
i ×

B∏

j=1

e
− 1

2σ2ej

(uj+Rjm)TAT
j Aj(uj+Rjm)− 1

2σ2m
mTm

1Ω(m). (11)

Due to the first product and geometric restrictions both in-
volving m, this is not a well-known type of distribution. In
order to draw samples from it, a strategy known as Metropolis
within Gibbs [7] was adopted: instead of directly sampling
from the posterior distribution of m during the Gibbs sam-
pling, samples m∗ are drawn from some proposal distribution
q(m|m(i−1)) and accepted as the next sample of m, denoted
as m(i), with probability

α=min

(
1,

p(m∗|y,a(i),σ2(i)

e )q(m(i−1)|m∗)

p(m(i−1)|y,a(i),σ2(i)

e )q(m∗|m(i−1))

)
. (12)

The chosen proposal distribution was a Gaussian centered
on m0 that maximizes ξ(m) = ln p(m|y,a,σ2

e), and with
covariance matrix given by minus the second derivative of
ξ(m) computed at m0, denoted by H(m0). In order to im-
pose the geometric restrictions over m, the support of the
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proposal distribution itself was restricted to the set Ω. This
procedure is an improvement of the so-called Laplace Ap-
proximation [8], since it does not simply substitutes the target
distribution by a Gaussian one, but there is some probability
that such samples are rejected.

While matrix H(m0) can be analytically computed, find-
ing m0 is quite difficult and requires the use of some nu-
merical approximation method. Since ξ(m) is approximately
quadratic, a few iterations of Newton’s method [9] may suf-
fice to that end.

5. RESULTS

The performance of the proposed algorithm was evaluated
through tests where a real audio signal was artificially de-
graded by: (A) a piecewise linear distortion curve as in the
model, in order to assess the method’s accuracy and conver-
gence; and (B) a more general smooth distortion curve, in
order to assess the method’s generality.

The signal chosen for the tests is a 3-s monophonic
recording in PCM format, sampled at 44.1 kHz with 16-bit
precision, where a flute plays a single note with vibrato. The
simplicity of the signal allows one to perceive very clearly
the distortion, even when it is not too severe.

The tests were run in a personal computer with a quad-
core processor operating at 2.3 GHz clock, and 8 GB of RAM.

5.1. PIECEWISE LINEAR DISTORTION

The signal was artificially degraded by a piecewise linear dis-
tortion described by angular coefficients

[1/2 1/4 1/6 1/8]T . (13)

Since the proposed algorithm recovers the inverse func-
tion, i.e. the function which restore the original signal, the
algorithm is expected to output the vector

m = [2 4 6 8]T . (14)

In order to save processing time, considering that the non-
linear distortion is the same throughout the entire signal, a
single block with L = 1000 samples in the region of maxi-
mum magnitude of the degraded signal, expected to provide
information about all m entries, was processed. The estima-
tion algorithm ran for 100 iterations, outputting the average of
the last 50 samples for each parameter, after a burn-in period
of 50 iterations. The algorithm initialization was performed
by: estimating the order-P vector a(0) from the corrupted sig-
nal y using a well known method [10]; and choosing m(0)

with ones in all its entries, meaning no distortion.
In Figure 3, where red squares mark their real values, one

can verify the successful convergence of angular coefficients.

Fig. 3: Convergence of m.

Fig. 4: Comparison of original, distorted and restored signals.

After application of the estimated inverse distortion to the cor-
rupted signal, the restored signal was audibly undistinguish-
able from their original version, as Figure 4 visually confirms.
Measured mean iteration duration was around 0.12 s.

5.2. SMOOTH NONLINEAR DISTORTION

The signal was artificially degraded by a distorting curve de-
scribed by arctan(λx)/λ, with λ ∈ {1, . . . , 5} (the higher
the value of λ, the stronger the degradation).

In order to obtain a good estimate of the smooth curve, a
larger number of segments was required: M = 90 were suf-
ficient even in the most degraded examples, and was adopted
in all cases to provide fair comparisons. Consequently, more
information was necessary to feed the restoration procedure:
10 blocks of L = 1000 samples were processed, which en-
larged the overall mean iteration duration to 1.56 s. As in
Section 5.1: the estimate was averaged from the last 50 of
100 algorithm iterations; and initialization was performed as
in the previous test, but now with an AR-model order P = 40,
which is sufficient to accurately describe any test signal block.

Once more, the signals restored according to the estimated
distortion curves sounded undistinguishable from the origi-
nal version. The objective evaluation tool Rnonlin [11], tai-
lored to grade from 0 to 1 the similarity between a nonlin-
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Rnonlin note
Value of λ Distorted signal Restored signal

1 0.9730 0.9996
2 0.9289 0.9994
3 0.8949 0.9991
4 0.8695 0.9976
5 0.8487 0.9943

Table 1: (Rnonlin grade)×λ for distorted and restored signals.

Fig. 5: Distortion curves for distorted and restored signals.

early distorted signal and its reference version, was used to
check the results. Table 1 attests that the algorithm performed
very well in all cases. As a visual confirmation of this good
performance, Figure 5 compares the distorting and estimated
curves for λ = 3, which seem nearly identical. All signals are
available from www.smt.ufrj.br/∼hugo.carvalho,
along with additional examples.

6. CONCLUSION AND FURTHER WORKS

In this paper, an algorithm aiming to identify and remove
memoryless nonlinear distortions typically found in audio
signals was proposed. The method is based on Bayesian
statistics; does not assume any knowledge on the original
signal—which is modeled by a fixed-order AR model with
unknown coefficients; and models the distortion curve as
piecewise linear.

The main advantages of the proposed method are that the
coefficients describing the nonlinear distortion are easily in-
terpretable and constrainable, and that the model is general
enough to deal quite well with smooth memoryless distorting
curves even if they are quite severe. In all performed tests,
the restored signal sounded indistinguishable from the origi-
nal, which was confirmed by Rnonlin grades.

The need for a large number of segments to approximate a
general nonlinear distortion should be further investigated. It

was noted that the piecewise linear approximation leaves an
almost white noise in the restored signal, to which the AR-
parameter estimation is known to be very sensitive, and thus
capable of impairing the estimate of m. By increasingM , this
residual can be made so low as to not affect any parameter es-
timate. On the other hand, more blocks must be processed to
provide the necessary information, since a smaller number of
signal samples are modified by each segment of the distortion
curve; too few samples around m = 1 may even erroneously
re-scale the signal magnitude due to a poor estimation of σ2

e .
Another future target in this work is the inclusion of memory
in the model.
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