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ABSTRACT
In this paper, a new approach is presented for the analysis
and the identification of the surface electromyography (EMG)
signals of biceps and triceps muscles. The objective of this
study is the accurate classification of elbow flexion and ex-
tension movements. We propose a cropping method based on
the agreement of the movement changes and the EMG signal
using the upper limb kinematic. Then, we perform the extrac-
tion and selection of several well known features in time and
frequency domain. The selected features are used as inputs
for our support vector machine classifier that is designed us-
ing an optimal weight vector criterion. Afterward, the training
and test steps are performed in the proposed scheme. Finally,
numerical simulation assesses the accuracy of the classifica-
tion, as well as the robustness of the proposed approach con-
sidering noisy measurements.

Index Terms— Electromyography, feature extraction,
upper limb kinematic, support vector machine, quaternions.

1. INTRODUCTION

The surface electromyography (EMG) signal contains rele-
vant information about the electrical activity produced by the
neuromuscular process during contraction or relaxation [1].
Due to the nature of the EMG, it is possible to extract some
characteristics, which are useful to identify the produced
movements, as a function of the measured electrical activity.
Nevertheless, the complexity of the measured EMG signals
makes the detection and classification process a difficult
task [2].

In the literature, different studies had been carried out,
with the aim to identify movements from EMG signals. In [3],
the authors focused on the identification of five hand move-
ments in which the obtained accuracy range was 94% to 99%.
In the same way, [4] proposed the detection of the wrist and
ring finger movements and achieved an accuracy of 87.3%.
More recently, in [5], the authors put forward the recognition
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of eight grasping gestures and earned an accuracy between
96.9% and 99.65%.

Although these studies have reached good accuracies,
none of them has considered the synchronization of the upper
limb kinematic with the EMG signal, to extract the signal
fragment that match with each movement. Consequently, the
main contributions of this paper are as follows:
1. The development of an open source software, which can:
a) show in real time the synchronization of upper limb kine-
matic and EMG signals, b) fill automatically data gaps in
kinematic data using quaternions approach, c) extract EMG
signals in an accurate way through the calculation of kine-
matic parameters, during the flexion and extension.
2. Design a methodology for analyzing and choosing the
bests features to identify and classify movements, avoiding
black boxes, which improve the control of the classification
and generalization of the method.
3. Propose a nonlinear support vector machine (SVM) classi-
fier that is feeded with an experimental data set, that consider
variations in kinematical parameters. Moreover, we perform
an exploration of the SVM settings, which give us an identi-
fication of the parameters that influence the learning process.
Finally, the robustness of the proposed scheme is test by
artificially adding zero-mean white Gaussian noise.

As a result, we achieve and maintain an accuracy of
99.79% using noisy measurements as input to the SVM clas-
sifier instead of the noise-free measurements used in the
previous studies. Furthermore, we note that the obtained ac-
curacy is achieved by testing the EMG signal from a new sub-
ject. This achievement is highly important since it means that
the proposed scheme is accurate and robust even in the pres-
ence of new a subject not included in the learning process.
Consequently, the proposed scheme ensures generalization
and applicability.

2. EXPERIMENT AND MATERIALS

Three healthy subjects have participated in the proposed
experiment. Each subject performed flexion and extension
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Fig. 1. Distribution of markers in the upper limb kinematic
chain.

movements, changing the covered angle and speed of move-
ment while the upper limb motion tracking (ULMT) and
EMG signals for biceps and triceps are recorded. Subject
one, two, and three, performed one, four, and six trials re-
spectively, thus making a total of 44 recorded EMG signals.

The EMG signals have been recorded using the ZE-
ROWIRE wireless EMG system with a sampling frequency
of 1 kHz. All subjects were equipped with two EMG sen-
sors, which were located over the biceps branchis and triceps.
We selected these muscles because they are the main mus-
cles involved in the elbow flexion and extension [6], and
consequently, they produce high electrical activity during the
movements.

The ULMT is performed using 7 3D VICON cameras and
Nexus software. The system has a sampling frequency of
200 Hz. The subjects were equipped with 30 retro-reflective
markers, positioned all over the upper limb kinematic chain
including the spinal column, see Fig. 1, distributed as fol-
lows: i) Occipital bone (markers 1 to 3). ii) Cervical and
lumbar vertebra (markers 4 to 13). iii) Sacrum (markers 13
to 15). iv) Scapula (markers 16 and 17) v) Medial epicondyle
of humerus (marker 18). vi) Coronoid process of ulna and
radius (markers 19 and 20). vii) Styloid process of ulna and
radius (markers 21 and 22). viii) Metacarpophalangeal joint
of fingers 1, 2, 3 and 5 (markers 23 to 26). ix) Proximal inter-
phalangeal joint of the fingers 2, 3 and 5 (markers 27 to 29).
x) Interphalangeal joints of finger 1 (marker 30).

3. PRE-PROCESSING OF DATA

The pre-processing of data consist in the visualization and
extraction of the EMG signals, that corresponds to the flexion
and extension movement. For this issue, we develop an open
source software1 (developed in Matlab, see Fig. 2) which: i)
Displays ULMT data, ii) displays the corresponding EMG
signals, iii) calculates the elbow angle and the correspond-
ing angular velocity, iv) synchronizes in real time the EMG
signals and the ULMT data, with the aim of extracting sig-
nals for flexion and extension movements from the raw EMG
data, taking into account the different sampling frequencies.

1The open source software will be available soon at
http://leme.u-paris10.fr/promain-565200.kjsp

Fig. 2. Software’s interface.

For the purpose of plotting the ULMT data, the markers are
clustered by regions as follows: i) Head markers 1 to 3, ii)
spinal column markers 4 to 13, iii) sacrum markers 13 to 15,
iv) scapula markers 16 to 18, v) arm markers 18 to 20, vi)
forearm markers 19 to 22 and vii) hand markers 21 to 30.
These regions are used to draw lines between markers to al-
low an easy interpretation of the 3D visualization, linking the
scattered points in the graph (this explains that some markers
are repeated in different clusters).

3.1. Automatic correction of missing data and outliers

Frequently, some markers of the ULMT disappear within sev-
eral periods of times. Vicon Nexus software tries to recover
the missing markers, but sometimes the software fails. So
that, the missed values are assumed as zero by Matlab (see
Fig. 3). Considering that the ULMT is used to the kinemat-
ical analysis, it is important to retrieve the markers still lost
after Vicon Nexus software correction.

Consequently, we propose a mathematic model, which
can automatically determine the values of the missed mark-
ers. The model is based on quaternions, which are an aug-
mented representation of a 3D vector. The quaternions are
often used in several domains, including computer graphics

Fig. 3. Examples of missing ULMT Markers.
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Subj. Trial Range Angle [◦] Speeds [rad/s]
Flex Ext Flex Ext

1 1 057,92 -071,29 1,80 -2,04

2

1 097,37 -102,28 1,24 -1,30
2 108,69 -117,79 1,93 -1,76
3 117,27 -117,87 8,15 -6,22
4 117,27 -117,87 1,49 -1,32

3

1 048,54 -038,74 2,72 -1,77
2 043,18 -039,88 1,71 -1,22
3 036,80 -041,40 2,56 -2,18
4 046,60 -044,44 2,62 -1,52
5 046,76 -046,56 2,54 -1,84
6 045,63 -043,73 2,41 -1,49

Table 1. Angles and speeds of movements.

and robotics [7], to formulate rotations. Due to space limita-
tion, we briefly describe the model, more details are included
in the open source package software.

Our proposed model consists of a coordinate system fixed
to each marker, and a set of vectors which links the markers
between them, maintaining the order of the markers cluster
(e.g. marker 1 is linked to marker 2 by a vector, and marker
2 is linked to marker 3 by another vector, and so on). Then,
we define a group of quaternions, which express the rotations
between the created vectors, to verify the position of each
marker. When the position of a marker exceed a threshold
of 3mm w.r.t. the calculated position with the quaternions,
the marker is replaced by the calculated point, so that, the 3D
model is automatically corrected.

3.2. Elbow angle evaluation and analysis

Once the 3D model is corrected, we can determine correctly
the elbow angle ϕ. For this purpose, we use two vectors: one
from the elbow to the wrist and the other from the elbow to
the shoulder. Since there are two markers in the elbow, it is
required to find the position of the middle point p1 between
the coronoid process ulna and radius (markers 19 and 20), and
also the point p2 in the wrist, between the markers placed on
the styloid process of ulna and radius (markers 21 to 22).

The arm vector denoted by va ∈ R3 is the vector that links
the point p3 (marker placed on the epicondyle of humerus),
to the point p1. The forearm vector denoted by vfa ∈ R3

links points p1 and p2. With these two vectors, the elbow an-
gle ϕ is calculated as ϕ = arccos (〈va,vfa〉/‖va‖‖vfa‖) . Since
the EMG signal and the UMLT are synchronized, our soft-
ware calculates the angular velocity, defined as ω = dϕ/dt,
to identify if the angle ϕ is increasing or decreasing. The
behavior of ϕ allows the exact identification of elbow flex-
ion and extension movements, which is important for the cor-
rect and accurate extraction of EMG signals. As result of the
pre-processing, we obtain a set of EMG signals which corre-
sponds to electromyography of biceps and triceps for flexion
and extension at different angles and speeds (see Table. 1) for
all subjects and all trials.

4. FEATURE EXTRACTION

Feature extraction is a technique to obtain relevant informa-
tion of a signal, in time or frequency domain, which is given
by a single value [3]. There are several features often used for
analyzing EMG signals. Specifically, we consider the follow-
ing features:
• Entropy : Ent(s) = −

∑
i o

2
i log2(o2

i ) where oi represents
the projection coefficients of the signal s in an orthonor-
mal basis [8].

• Mean Absolute Value : MAV(s) = n−1
∑n

i=1 |[s]i|,
where [s]i represents the i-th sample of the signal s, and
n is the number of samples.

• Mean value: M(s) = n−1
∑n

i=1[s]i.

• Harmonic mean: HM(s) = n(
∑n

i=1[s]−1
i )−1.

• Mean frequency: MF(s) = (
∑N

j=1 Ij)
−1
∑N

j=1 Ijfj
where N denotes the number of harmonics in the spec-
trum, Ij represents the magnitude of the j-th harmonic,
and fj is the frequency of the j-th harmonic.

As previously mentioned, the aim of this study is to iden-
tify two movements (elbow flexion and extension) from EMG
signals. Therefore, the proposed approach is to extract the
features mentioned above from electromyography signals, to
create two sets of features, one for flexion, and one for the
extension. These sets are used to characterize the difference
between the features which is evaluated using a Euclidean dis-
tance. It is important to note that the generated sets of features
are affected by the variations in kinematical parameters, such
as speed and angle range of the performed movements.

To chose the best set of feature for our classification
scheme, the maximum distance between the nearest values
of each couple of feature is calculated. For this, we propose
the following criterion which is applied to all trials in the two
muscles (biceps and triceps):
(b, u) = arg max

b,u

(
min

(
|zext

b −zfle
b |+ |zext

u −zfle
u |
))

for

b 6= u where zext
b and zfle

b are the b-th features for exten-
sion and flexion, zext

u and zext
u are the u-th features for

extension and flexion. Based on the proposed criterion, the
selected features are found to be the entropy and the mean
frequency features. Therefore, with these selected features,
we build a matrix X , in which each row is the value of
[Ent(sbi),MF(sbi), Ent(str),MF(str)] for one trial, where
sbi and str are the biceps and triceps recorded EMG signals
respectively (note that the extracted features are influenced
by variations in kinematical parameters). Table 2 shows the
extracted values of the selected features stored in the matrix
X for the different subject and different trials.

5. CLASSIFICATION SCHEME

The matrix X , can be considered as a set of points in a 4-th
dimensional features space, wherein each l-th point xl ∈ R4,
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row
Flexion

row
Extension

Biceps Triceps Biceps Triceps
Ent MF Ent MF Ent MF Ent MF

1 3,3 269,4 3,4 270,2 12 3,7 267,1 2,3 262,6
2 3,4 270,3 2,0 259,0 13 2,0 259,3 2,2 261,9
3 3,5 271,0 2,0 259,7 14 2,0 259,3 2,2 262,0
4 3,2 272,6 2,5 262,7 15 2,5 262,6 2,5 263,8
5 3,5 269,8 2,1 258,0 16 1,8 257,6 2,4 264,6
6 4,4 280,6 2,8 266,7 17 2,6 263,4 2,9 269,8
7 3,0 269,8 2,2 262,1 18 2,3 265,6 2,1 267,1
8 3,2 272,6 2,5 262,7 19 2,5 262,6 2,5 263,8
9 3,4 269,5 2,1 260,0 20 2,3 263,8 1,7 260,7
10 4,3 273,7 2,7 264,4 21 2,6 263,7 3,0 271,2
11 3,3 269,1 2,3 262,6 22 2,1 261,5 2,2 265,9

Table 2. The feature matrix X in which rows one and twelve
are trial extracted from subject one, rows two to five and rows
thirteen to sixteen are trials extracted from subject two, and
the other rows are trials extracted from subject three.

has an etiquette yl ∈ {1,−1}. The etiquette classifies the
points into two categories: flexion or extension. The points of
the matrixX can be separated, using a learning strategy based
on statistical theory, called support vector machine (SVM).
The SVM calculate an optimal hyperplane between such cat-
egories, using a matrix X ′ composed by q rows, where each
row x′q is a support vector. In our case, the support vectors
are the rows three, four, six, fourteen, fifteen and seventeen
of the matrix X , i.e. three vectors for flexion and three for
extension.

In our study, a linear separation is not possible, as
can be seen from Fig. 4. Consequently, we propose to
use a non-linear SVM classifier, where the optimal hyper-
plane is obtained by solving a quadratic programming prob-
lem (QPP) [9], given by minw,b,ξ

1
2w

Tw + C
∑m

q=1[ξ]q
s.t. yq

(
wTφ(x′q) + b

)
≥ 1 − [ξ]q and [ξ]q ≥ 0 for

q = 1, . . . ,m

where w and b determine the hyperplane in feature space,
[ξ]q represents the error soft margin, C is a term to control
the overfitting, m denotes the amount of support vectors in-

Fig. 4. Distribution of features for flexion and extension. Red
circles and blue squares represent, respectively, flexion and
extension features.

Fig. 5. Percentage of classification as function of σ and C.

side X ′, and φ maps x′q into high-dimensional space. The
solution of this problem, is the following decision function:
Γ(xl) = sign

(∑m
q=1 αqyqK(x′q,xl) + b

)
in which αq

are the lagrange coefficients used to solve the QPP prob-
lem [8], and K(x′q,xl) denotes a kernel function, that is, in
our case, given by the following radial basis function (RBF):

K(x′q,xl) = exp−
||x′q−xl||

2

2σ2 where σ denotes a positive
parameter for controlling the radius. This RBF function is se-
lected due to its capacity of maximizing the distance between
the hyperplane and the points [10].
Since we use six support vectors, the decision function Γ(xl)
is applied to the remaining points xl of the matrix X . Then,
the result of Γ(xl), is compared with yl. If the values match,
it is considered that the SVM has correctly classified the point
xl. As a result, using a nonoptimal setting of σ and C, the
algorithm may achieve a classification percentage of 90.91%.
This result shows that only two movements of all the trials
(flexion of the second subject with trial three, and flexion of
the third subject with trial three) are not correctly classified.
It is important to remark that the SVM is trained only with
13.63% of the whole trials (considering trials of subject two
and three), but the algorithm is able to classify correctly the
EMG signals produced during flexion and extension of the
first subject whose patterns are new for the classifier and was
not used in the training step.
To improve this result, we analyse the effect of the parameters
σ and C in order to identify their influence on the final per-
centage of classification. This numerical analysis consists of
a double iteration changing the values of the stated parame-
ters. As result, we find that there is an optimal area for values
of σ near to 1.1 and C close to 2.5, where the percentage
of classification reaches 100% as is shown in Fig. 5. It is
important to note that the 100% of successful classification
is due to the fixed (finite) number of testing data. To test the
method in a more realistic environment, the EMG signal may
be corrupted by noisy data. Such scenario is discussed in the
following section.

6. CLASSIFICATION ROBUSTNESS IN THE
PRESENCE OF NOISY MEASUREMENTS

Even if we obtained an accurate result of EMG signals iden-
tification with the nonlinear SVM classifier, it is necessary to
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Fig. 6. Classification results after adding noise for the first
subject and trial one.

consider that there are several conditions that could influence
the results (e.g. the sweat and fatigue of the subject and dis-
placement of the recording electrodes). The effect of some
no idealistic conditions can be modeled as an additive white
Gaussian noise (AWGN) [1]. In our simulations, we added
AWGN to the biceps and triceps EMG signal measurements
of: (a) the first subject for trial 1, (b) the second subject for
trial 1, (c) the third subject for trial 5. Note that the con-
taminated trials are only used to test the robustness and thus,
they were not in the training set X ′ of SVM. The noise is
generated for several values of signal to noise ratio (SNR),
using 1000 Monte Carlo trials for each value of SNR. The
corresponding noise values lies between 36 dB and 50dB.
Subsequently of adding noise to these signals, the same pro-
cess described in section 4 is applied to obtain features of the
noisy signals. The SVM achieves a successful classification
of 99.79%.

7. CONCLUSION

In this paper, a new elbow flexion and extension identifica-
tion scheme is proposed. A quaternions based method was
used to correct the ULMT for data analysis, which let us cal-
culate the position of missed kinematic markers. Moreover,
with the corrected ULMT, we calculated, in an accurate way,
the kinematic parameters as angles and speeds of the move-
ment. These kinematic parameters allow us to identify with
certainty the fragment of the EMG signal that corresponds
to a specific movement, permitting the analysis of the cor-
rect signal. The above is one important difference with the
state of the art because authors usually use the complete EMG
signal or a fixed time window, so their result could not be
proven for a specific movement. Consequently, out method
enables a better understanding of the EMG phenomena dur-
ing the movement increasing the possibility of enforcement
in movements recognition applications. Furthermore, we de-
signed a novel criterion to select the best couple of features for
the classification. Then, we set up a nonlinear SVM classifier

that has as input the selected features. Finally, the numerical
simulation showed that the proposed scheme performs almost
perfectly (99,79%) with a moderately contaminated measure-
ment.
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