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ABSTRACT

In this paper, a new approach for sampling rate offset (SRO)
estimation between nodes of a wireless acoustic sensor net-
work (WASN) is proposed using the phase drift of the coher-
ence function between the signals. This method, referred to as
least squares coherence drift (LCD) estimation, assumes that
the SRO induces a linearly increasing phase-shift in the short-
time Fourier transform (STFT) domain. This phase-shift, ob-
served as a drift in the phase of the signal coherence, is ap-
plied in a least-squares estimation framework to estimate the
SRO. Simulation results in different scenarios show that the
LCD estimation approach can estimate the SRO with a mean
absolute error of around 1%. We finally demonstrate that the
use of the LCD estimation within a compensation approach
eliminates the performance-loss due to SRO in a multichan-
nel Wiener filter (MWF)-based speech enhancement task.

Index Terms— Wireless Acoustic Sensor Networks, Sig-
nal Enhancement, Sampling Rate Offset, Coherence Drift

1. INTRODUCTION

In a wireless acoustic sensor network (WASN), sampling
rate offsets (SRO), caused by clock imperfections in different
nodes, introduce many challenges for the fusion of signals
captured by different microphones [1, 2]. For example, an
SRO severely degrades the performance of different speech
processing algorithms. Elson and Kay [3] addressed the
time synchronization problem in wireless sensor networks
by using a reference-broadcast synchronization algorithm to
synchronize the clocks. The SRO estimation problem for
acoustic beamforming in particular was tackled by Wehr et
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al. [4], using a modulated RF reference signal that is broad-
cast to each device. Pawig et al. [5] applied a reference signal
for estimating the SRO between input and output channels
in an echo cancellation system. It is noted that in the afore-
mentioned works, the synchronization schemes rely on broad-
casts of reference signals, which requires dedicated hardware,
protocols, and/or communication channels. Reference-free
(‘blind’) SRO estimation techniques have also been devel-
oped, which directly estimate the SRO from the recorded
audio signals themselves without using a reference signal.
For example, Miyabe et al. [2] developed a blind SRO esti-
mation method based on a maximum likelihood estimation of
the sampling frequency mismatch in the STFT domain. In [6]
a link between SRO and the Doppler effect was considered
and a wideband correlation processor for blind SRO estima-
tion was applied. In [1] the phase-drift between the coherence
of the speech-absent segments of signals was used, assuming
the availability of a coherent noise source and a voice activity
detector. However, these blind SRO estimation methods have
a limited accuracy and suffer from robustness issues. In this
paper, we aim to tackle both of these issues. For illustration
purposes, we will use our SRO estimates in a multi-channel
Wiener filter (MWF)-based speech enhancement task [7].
This also requires a compensation for the SRO.

In [1, 6], after the estimation of the SRO, the reference
signal is re-sampled in the time domain using the Lagrange
polynomials interpolation to attenuate the effect of SRO.
While effective, this method is computationally expensive.
In this paper, we aim to avoid such an explicit time-domain
re-sampling, and instead we immediately compensate for the
SRO within the MWF computations in the frequency domain.

The rest of this paper is organized as follows. In Section 2
the problem of SRO estimation is explained. In Section 3, the
proposed SRO estimation approach is described. Section 4
briefly describes the applied SRO compensation approach.
Our experimental setup and evaluation results are presented
in Section 5. The paper ends with conclusions in Section 6.

2. PROBLEM FORMULATION

Without loss of generality (w.l.o.g.), we assume that each mi-
crophone belongs to a different node of the WASN, and hence
there is an SRO between any microphone pair. The sound
pressure of the i*" microphone and its corresponding discrete-



23rd European Signal Processing Conference (EUSIPCO)

time signal are written as x; (t) and x; [n], respectively, where
t denotes the continuous time and n denotes the discrete time.
Since each node uses a local clock, relative SROs between
them are inevitable and are mainly due to the variability of the
oscillator in each clock. Therefore, the sampling frequency of
the i*"* microphone is equal to

foi =1 +6) 1 ey

where |¢;| < 1 is the relative SRO with respect to the ref-
erence sampling rate fr at an arbitrarily chosen reference
node. Without loss of generality it is assumed that the sam-
pling rate of the first microphone is the reference sampling
rate, i.e. fs1 = f;ef and hence ¢; = 0. It is assumed that
nodes ¢ and node 1 are exchanging locally recorded audio
signals, e.g., to perform multi-channel speech enhancement
using MWE.

The goal is to estimate ¢; for a given microphone signal
x; [n], and to compensate for its effect within the computation
of the MWF. The MWEF is typically conducted in the short-
time Fourier transform (STFT) domain to reduce the com-
putational load, hence we aim for SRO compensation in the
STFT domain. The (" frame X} [k] of the STFT of x; [n] is
obtained as follows:

K-1
Xi[k] = Z wll]z; {LP-F - I;] exp <—27[T(klj> , @

=0

where 7 = +/—1, K is the STFI-frame length, P is the STFT-
frame shift, w[{] is a user-defined window function, and k is
the discrete frequency index ranging from 0 to K — 1.

3. LEAST-SQUARES COHERENCE DRIFT
ESTIMATION

In this section, a new SRO estimation approach, referred to as
least-squares coherence drift (LCD) estimation, is described.

3.1. Coherence

The coherence of 1 [n] and x; [n] within frame! m of length
I' > K is obtained as
a7’ (K]
Tilk] = 177 3)
i [klaii k]

where ¢7"; is the cross-spectrum between the signals in node 1
and 7 and ¢;", denotes the auto-spectrum of the signals in node
i. We define m as the sample index of the mid-frame sample
of the frame that is used to compute h7"; [k].

All q;,’fq can be estimated using the Welch method [8],
which is a common method to estimate periodograms. The
Welch method chunks the m-th time frame of length I into
several overlapping segments of length X < I', and then
takes the average of the cross-correlation of the STFT of the
segments.

1t is noted that a coherence frame is not the same as an STFT frame in

Q).
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Based on the shift-theorem, it is shown that a fixed delay

of o; samples in z; [n] causes a shift of 22%¢ in the coherence
phase, i.e.
m m 27'(]{3@,1' .
R [k; 0i] = hl,i[k]eXP( K ]) ; @

where h7%[k; o;] is the coherence between 1 [n] and z; [n]
after the latter is delayed by o samples. Such a fixed delay
can incorporate, e.g., an additional acoustic propagation de-
lay when the microphones are not equidistant from the sound
source or a fixed time-offset in the clocks of the nodes. How-
ever, note that these fixed delays are assumed to be unknown
and are in principle absorbed within h1";[k]. Equation (4) is
merely introduced to explain the shift theorem and for nota-
tion purposes in the sequel.

An SRO between z; [n] and x; [n] causes a linearly in-
creasing delay in the time-domain, and hence a linearly in-
creasing phase-shift in the coherence. The sample delay of
x; [n] in the mid-frame sample (m) caused by the SRO (¢;)
w.r.t. z; [n] is denoted as p!™, and can be computed as

pi = [% - ﬁ} ~ me;. )

The SRO induced delay is equal to (5) for the mid-frame
sample and equal to (m — 1)¢; and (m + 1)e; for the sam-
ple before and after, etc. Since this delay increases for each
consecutive sample in a frame, calculating the coherence of
the reference signal and the signal with SRO (h7%; [k; 05 p7*])
is difficult. However, assuming the maximum drift caused by
the SRO inside a single coherence-frame is much smaller than
1 sample, i.e. [I'¢;| < 1, the coherence hT";[k; 0;; p}"] can be
approximated as

Ry [ks 05 p") ~ WYY [k 0i + p7"]

, 21k (0; + p"*) .
— rn_ k, 3 .
171[ ]eXp |: K J

3.2. LCD estimation

(6)

To estimate the SRO, we exploit the phase-drift of the co-
herence over different frames. To remove the effect of any
arbitrary fixed delay g;, we use the phase difference between
the coherence of two consecutive frames, such that, relying

on (6),
b 1k; i pi] o 2mk(el—p ) 2mkh e (7)

Wy s 0 A x x

where the £ denotes the phase of the phasor and A is the
frame-shift (the last step follows from (5)). Therefore, the
phase difference between the coherence of two different
frames with frame shift A increases linear by the SRO.

To improve the estimation accuracy, we repeat this proce-
dure for .J consecutive frames and formulate the results in the
following matrix form:

A =Bg ®
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where A is a matrix of size K x J and its elements ay, ; are
obtained as follows

. B ks 0 0 )
kg = m—(j—1)A m—(j—1)A
hlti (j-1) [k‘, 0i; Py (j-1) ]

and B is a matrix of dimension K x J and its rows by, are
obtained as follows
_ 2rkA 17

by, %

) (10)
where 17 is a row vector of dimension J with all elements
equal to 1.
A least-squares (LS) estimation? of €; can be obtained by
solving
& = arg min|| A — Be;||%, (11)

€

where |-|| # denotes the Frobenius norm (i.e., the squareroot
of the sum of the squared entries). However, based on exper-
iments, it is found that the data of several frequency bins, i.e.
the data in some rows of A, is not reliable. Furthermore, (8)
compares phases, which are defined over a circular topology,
i.e., a phase of 27 is the same as a zero-phase. However, for
phases that are close to this phase ambiguity boundary, small
errors due to noise may result in large absolute differences in
(11), and hence minimization of (11) may result in an inaccu-
rate estimation of the SRO.

Therefore, we apply a two-step procedure, which first per-
forms an outlier detection and removal procedure, followed
by the LS estimation (11). In the first step, we make a rough
estimation of ¢; through the following least-absolute (LA)
minimization:

~LA __
€0 =

arg min||A — Be;l|1, (12)

€4

where ||-||1 denotes the L;-norm (i.e., the sum of the absolute
value of the entries). The LA estimation is known to be more
robust against outliers, and will give small weights to errors
caused by the outliers. In the second step, the outliers are
detected. The rows corresponding to any element of the data
matrix A satisfying the following condition are considered as
an outlier:

|ak,j — bk’j€§‘A|> 1.50']', (13)

where |-| denotes absolute value and o is the standard de-
viation of elements in the j** column of the residual matrix
R = A — B4,

After detection and removal of the outliers, a more accu-
rate SRO estimation can be found this time using a LS esti-
mation for computational convenience:

e = arg min||A — Be; || %, (14)

2Qther distance measures can also be applied for this problem. The pro-
cedure of solving a similar estimation problem using KullbackLeibler diver-
gence is explained in [9]

2328

where matrices A and B are equivalents of A and B after
removing their outlier rows. Finally, the optimal solution of
(14) can be obtained as follows:

(QI.AS — (B_')TA’
Y (B)TB’

s)

where T denotes transpose and -~ denotes vectorization, where
columns of a matrix are stacked on top of each other.

In the sequel, we refer to this approach as the least coher-
ence drift (LCD) estimation method.

Remark: In LCD estimation, we assume that the phase of
the coherence function is fixed between consecutive frames,
when there is no SRO. In a single-source scenario, this im-
plies spatial stationarity, but does not require spectral station-
arity. In a multi-source scenario, we assume that each fre-
quency bin is dominated by a single coherent source, such
that the single-source assumption holds for each individual
frequency bin®. Frequency bins that do not satisfy this as-
sumption are effectively removed by the outlier removal op-
eration.

4. SRO COMPENSATION

For the SRO compensation, two complementary operations
are performed: skipping critical samples in the time-domain
and phase compensation in the frequency domain based on
the shift-theorem. We will explain why both have to be ap-
plied in a hybrid compensation framework. In this section,
an estimation of the SRO is assumed to be available from the
LCD method described in Section 3.

4.1. Time-domain operation

Assume w.l.o.g. that the i*” node has a positive relative SRO
¢; with respect to the reference node. The SRO then causes a
linearly increasing delay between the two signals. Therefore,
after a certain time 7, the signals are drifted more than 1 sam-
ple apart from each other. The corresponding sample n is
found as the first sample for which the following inequality is
satisfied:

N, nr

ey o
Therefore, this event will take place at approximately n, =
ei_l (using the same approximation as in (5)). By skipping
one sample after n, samples, the signals will be re-aligned
again. This procedure can be repeated after each n, samples
indefinitely and will ensure that the two of signals will never
drift further apart than 1 sample.

fref
s

4.2. Frequency-domain operation

The SRO compensation in the frequency domain is performed
based on the shift-theorem of the STFT. The shift-theorem

3This is a common assumption in speech processing and often holds when
the number of sources is limited. In Section 5, we show that our method
indeed works in a multi-source scenario.
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states that a fixed delay of p; samples in x} [n] causes a phase
rotation of 27}?" in frequency bin k. In other words, two sig-
nals shifted relative to each other in the time-domain can be
re-aligned by a simple phase shift in the frequency domain.
However, an SRO causes a linearly increasing delay between
the signals, not a constant one and we approximate a linearly
increasing phase-shift as a fixed one assuming the drift caused
by the SRO within a single STFT frame is much smaller than
1 sample, i.e. |Le;| < 1. Therefore, the approximation is
more accurate for a small frame-size and a small SRO. For
each frame we calculate the SRO delay at the mid-frame sam-
ple based on the estimated SRO and obtain the correspond-

. . 2mkmérS .

ing phase-rotation ————. After the frame is transformed

to the frequency domain, the k" frequency bin is multiplied
. 27rkm€£‘s

by exp (— J T) to compensate for the phase-rotation
caused by the SRO.

Since the MWF is typically applied in the STFT domain,
this frequency-domain compensation is computationally very

cheap.
4.3. Hybrid operation

If the frequency-domain operation would be applied alone,
the signals at two different nodes drift more and more away
from each other as the time increases, until there is hardly any
overlap between the signal content of the current STFT frame
in both nodes. Of course a phase rotation in the STFT domain
cannot compensate for this. Therefore, we should also apply
the time-domain operation to realign the frames.

Applying the time-domain compensation without the fre-
quency domain compensation is also not sufficient. Even
though the signals will then never drift further apart than one
sample due to the time-domain compensation, there is still a
significant performance drop due to short-term time-varying
coherence phases in the second-order signal statistics used in,
e.g., the MWFE.

Therefore, both compensation schemes in subsections 4.1
and 4.2 are essential to compensate for the SRO effects in,
e.g., a speech enhancement algorithm. The hybrid compensa-
tion is in fact split up in realigning the frames (coarse-scale
compensation) and the compensation of small phase-shifts
(fine-scale compensation).

The implementation in MWF is completely similar to
what was discussed for each operation independently, the
only difference is that an additional frequency domain com-
pensation is applied each time a sample is skipped (compen-
sating for a 1-sample delay corresponding to a phase shift of

5. VALIDATION

In this section, the accuracy of the proposed LCD estimation
and SRO compensation is investigated.

5.1. Simulation setup
A 5mx5mx3m room with a reflection coefficient of 0.3 at all
the walls is simulated. 25 speech signals are used comprised
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of read sentences from the Hearing in Noise Test (HINT)
database [10]. Two microphones at positions [4.5 1 0.5] and
[0.5 1 0.5] are considered, where the sampling rate of the ref-
erence microphone is set to 8kHz and the sampling rate of
the second microphone is subject to offsets of 1, 10 and 100
parts per million (ppm) of the sampling rate of the first micro-
phone, where ppm = 1076, In this simulation, re-sampling
is performed using Sound eXchange (SOX) software!. The
input SNR is 9.85 dB at the reference microphone and 10.45
dB at the second microphone. For each combination of SRO
and speech signal, 4 Monte-Carlo experiments are conducted,
where the locations of the speech and noise sources are ran-
domly selected yielding a total of 100 Monte-Carlo runs per
SRO.

5.2. SRO estimation

For the SRO estimation, we use coherence frames of length
I' = 8192 with 50% overlap. Coherence is calculated using
the Welch method [8] with segment size of K = 4096, using
a Hamming window, and with 75% overlap, i.e., P is equal to
4096/4=1024 samples.. The number of applied consecutive
frames is 7, hence the number of columns of the data matrix
Ais J =6.

The LCD estimation approach, is compared with a bench-
mark algorithm [1], which is also based on coherence of sig-
nals, here referred to as average coherence drift (ACD) esti-
mation, since it is based on averaging rather than a robustified
least-squares estimation.

Table 1 lists the mean absolute error Epra of the SRO
estimation. To study the effect of the outlier removal (OR)
procedure, we report the results of LCD and ACD estimation
with and without OR. Note that the original ACD does not use
an OR method, and it assumes a coherent noise source as well
as the availability of a VAD to estimate the SRO on speech-
absent segments. In our experiments we extend it with OR,
and apply it on all segments to obtain a fair comparison.

Table 1 demonstrates the accuracy of the LCD estima-
tion compared to ACD. It is also observed that the proposed
OR improves the results of both the LCD estimation and the
benchmark ACD estimation.

Figure 1 illustrates the accuracy of the SRO estimation for
different observation lengths (note that this impacts J, i.e., the
number of data points that are used in the least-squares esti-
mation). This figure shows that the accuracy of the LCD in-
creases by increasing the observation length. Of course, this
comes at the cost of decreased tracking capabilities and in-
creased algorithmic delays.

5.3. SRO compensation for noise reduction

For noise reduction, the speech-distortion weighted MWF
(SDW-MWF) [7] with square-root Hann window of size
1024, 50% window overlap and a forgetting factor of 0.997
is applied. Table 2 shows the output SNR of SDW-MWF

Uhttp://sox.sourceforge.net/
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Table 1: The Enia SRO estimation using the proposed method and baseline system (ppm).

System LCD ACD
Configuration || with OR | without OR | with OR | without OR
100 0.64 15.95 9.22 19.26
10 0.04 1.37 8.15 14.03
1 0.04 0.50 8.30 19.57

SRO Estimation Error

0.8 ‘
06— |
S04t 7

LE O
02 e 7
0 | ‘ s
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6. CONCLUSION

A new approach for blind sampling rate offset (SRO) esti-
mation in an asynchronous wireless acoustic sensor network
has been proposed in this paper. This method assumes that
the SRO causes a linearly increasing time-delay between two
signals, hence induces a linearly rising phase-shift in the
short-time Fourier transform (STFT) domain. After outlier
removal, the obtained coherence drift, which has a linear
relation with the SRO, is attained from a least-squares set
of equations. Simulation results show the effectiveness of
the proposed least-squares coherence drift (LCD) approach
for SRO estimation. We have finally demonstrated that the
LCD estimation scheme along with a hybrid compensation
approach can eliminate the SRO-induced performance-loss of
the multichannel Wiener filter (MWF) in a speech enhance-
ment task.

Fig. 1: The Fja of SRO estimation versus observation length.
Table 2: The SNR with and without compensation (dB).

Compensated
PPM [ Regular | true SRO | with estimated SRO
100 [ 1743 20.52 2055
10 || 1994 20.55 20.54
1 || 2050 20.50 2050
0 | 2055 20.55 20.55

without SRO compensation (in the column ‘Regular’) and
after SRO compensation using the LCD approach (in the
column ‘Compensated’). To investigate the effect of errors
in the estimation of the SRO on the proposed compensation
approach, we list both the results with perfectly known SRO
and with the estimated SRO.

Comparison of the last row of this table -where there is no
SRO between the nodes- with the other rows shows that the
SRO degrades the performance of the MWF, and this degra-
dation increases with the SRO*. Therefore, a compensation
method to avoid this performance-loss is necessary. The re-
sult of compensation with the true SRO is very close to the
perfect case (no SRO) indicating the efficiency of the applied
compensation scheme. When the SRO is estimated by means
of the LCD estimation approach a similarly high SNR is ob-
tained. Therefore it is confirmed that the presented approach
can effectively recover the degradation of MWF performance
caused by SRO.

“It is noted that the experiments are performed with an adaptive MWF,
which implicitly already performs some SRO compensation due to the con-
tinuous updating of the second-order statistics of the signals within the MWE.
However, this implicit SRO compensation is not sufficient, since the SRO
causes variations in these statistics which are usually too fast to be tracked
with an adaptive MWF.
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