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ABSTRACT

We introduce a novel method of image sampling based on
viewing grayscale images as manifolds with density, and sam-
pling them according to the generalized Ricci curvature in-
troduced by Bakry, Emery and Ledoux. A variation of this
approach, due to Morgan and his students is also considered.
This new paradigm generalizes ideas and results that are by
now common in Imaging and Graphics. We apply the new
algorithm to natural and range images, as well as cartoons
and show that the proposed method produces results similar
to those obtained by employing more standard approaches.
Furthermore, we show that our approach extends naturally to
other types of images, in particular to MRI and CT, where its
potential applications are maximal, as well as to meshes.

Index Terms— Weighted manifolds, generalized Ricci
curvature, image sampling and reconstruction.

1. INTRODUCTION

Motivated both by the classical Shannon Sampling theorem,
as well as by practical considerations, the sampling and recon-
struction of images represents a central problem in Imaging
and in related fields and has represented, in consequence, an
important research topic during the last few decades (see e.g.
[1] and the bibliography therein). Since the publication of [2],
considering images as surfaces and higher dimensional mani-
folds, embedded in some ambient space (usually R™), has be-
come a common paradigm. Using this framework, sampling
and reconstruction results were proven for meshes (Graph-
ics) [3,4], images [5], as well as more general signals [6].
Weighted manifolds arise naturally and frequently in
Imaging. Such weights (or densities) may appear as uncer-
tainties intrinsic to the acquiring of the image (for instance
in Ultrasonography), in modeling textures and, in a variety
of instances, as ad hoc tools employed at various stages of
the implementation of a variety of tasks, such as smooth-
ing, (elastic) registration, warping, segmentation, etc. (see
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e.g. [7]). Moreover, in the context of Medical Imaging, den-
sities appear at even a more basic, intrinsic level: Indeed, the
density of many types of MRI images equals the very proton
density. Therefore, modeling such images by manifolds with
density represents, as far as the physical acquiring process is
concerned, the proper approach and, as such, one can expect
more accurate results.

However, a more commonly encountered type of image
represents the simplest and most natural example of image as
a weighted manifold, namely grayscale images. Indeed, such
an image can be viewed as nothing more then the graph of
a distribution (the grayscale) over a very basic type manifold
(a rectangle). It is this very “toy example” that represent the
subject of study of this paper. Other types of naturally arising
distributions over manifolds appear in Imaging (certain types
of textures) and in Graphics (such as luminosity over a sur-
face/mesh). While experiments with meshes are currently in
progress, we defer the more interesting — but also far more
complicated — case of medical images to further study and
show, as already stated above, the feasibility of this approach
for grayscale images — natural and range images, and also for
cartoon type images.

2. MANIFOLDS WITH DENSITY

In solving many physical, as well as purely mathematical
problems, one is conducted, in many instances, to consider
manifolds with density (see [8]) that is Riemannian manifolds
M™, endowed, in addition, with a smooth, positive density
function ¥ = ¥(z), that induces weighted n- and (n — 1)-
volumes, e.g. in the classical cases n = 2 and n = 3, volume,
area and length. More precisely, the volume, area and length
elements dV, dA, ds of the weighted manifold (M™, V) are
given by:

AV = UdVy,dA = WdAg, ds = Wds

where dVj represents the natural (Riemannian) volume el-
ement of M™", etc. Usually density functions of the type
U (z) = e~ %) are considered. (However, more general den-
sity functions can, and have been, studied — see [8].) Note that
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prescribing a density on a manifold is not equivalent to a con-
formal scaling of the metric by a factor A\(x), because such
conformal deformations produce scaling of, for instance, the
area and volume, by different powers of \.

To generalize Gaussian curvature to the setting of mani-
folds with density, one has first to make appeal to the works of
Bakry, Emery and Ledoux [9, 10], where the following gen-
eralization of Ricci curvature (see [11] for a deep, but short
presentation of the classical notion) is introduced:

Ric, = Ric + Hessp, (D

(where Hess denotes the Hessian matrix). It is important for
us to note that, for surfaces, Ricci curvature reduces, essen-
tially, to Gaussian curvature K, more precisely K = %Ric.
Another generalization of Gaussian curvature for weighted
surfaces is due to Corwin et al. [12], namely:

K,=K+ Agp, 2

where Ay denotes the Laplacian of . It should be stressed
that this represents a natural generalization: Not only does it
reduce to the usual Gaussian curvature (up to a multiplicative
constant) for ¢ = const., it also satisfies a generalized Gauss-
Bonnet Theorem. Note that, unlike Morgan [8], but follow-
ing other authors, we adopted the “+” convention for the sign
of the Hessian and Laplacian commonly accepted in Geome-
try, since this is more intuitive and befits better the context of
imaging where grayscale values are always positive.

As we have already noted above, for certain types of med-
ical images, the distribution ¢ arises quite naturally. For range
and ultrasound images, a proper choice of the distribution is
the one suggested in [13]. However, for grayscale images a
simpler approach is possible, since any such image can be
viewed as a distribution over a grid (of pixels). It is precisely
this remark that we exploit in the sequel.

3. IMPLEMENTATION AND ALGORITHMS

3.1. Sampling of weighted manifolds

As already noted in the introduction, the problem of sampling
of images, meshes and more general signals has been studied
in detail and with a variety of methods. However, all these
works have in common the fact that say, the image, is sam-
pled using curvature, and more specifically, Gaussian curva-
ture, in a combination will some extrinsic curvature resulting
from the specific embedding considered (see the discussion
above). As it was shown in [14] Gaussian (or sectional) cur-
vature by itself is still an excellent sampling tool, since it al-
lows for the faithful reconstruction of a given manifold, from
topological point of view. In fact, Grove and Petersen also
proved in [14] a stronger result, namely that Ricci curvature
(which is a weaker invariant than Gaussian curvature) also
suffices to topologically reconstruct the manifold (up to ho-
motopy type, to be more precise). This result was extended to
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manifolds with density (weighted manifolds) in [15], where
the role of Ricci curvature is played by a generalized Ricci
curvature, that includes, as a special case, the one given by
(1). This approach was shown in [16] to be a proper sam-
pling method, allowing for good reconstruction of the mani-
fold from the metric, not just topological, viewpoint.

It is precisely this fact that we exploit in the present arti-
cle, taking advantage of the fact noted above that, in dimen-
sion 2, hence for grayscale surfaces, Ricci curvature essen-
tially coincides with Gaussian curvature, an invariant that is
easy to compute by numerical methods.

3.2. Curvature and Laplacian computation

The first term in the right-hand of (1) is easy to compute since,
for images, the base manifold is a flat one (being a planar
rectangle), thus its Gaussian curvature is identically 0, hence
so is its Ricci curvature.

Computation of the Hessian is based on the method pro-
posed in [17]. More precisely, we used the following formula
for the Hessian H,(p) = H,(x,y) of the function ¢ at the

pixel p = p(z,y).

Hy(z,y) = ¢(x,y) E ﬂ +o(z1 + 1, 29) {__21 —01] 3)
_~_S0(x1+27x2) |:(1) 8:| +<,0(.’L‘1+1,l’2+1) {(1) (1)]

0—-1 0 0
+90(:C17x2+1) |:_1 _ 2:| +(p(l’1,172+2) |:0 1:|

+...0

the relevant pixels, hence the remaining terms being deter-
mined by symmetry.

In the implementation of (2) the Laplacian used was the
one provided by the standard Matlab package.

3.3. Implementation

In the papers mentioned above [14-16], the sampling density
is theoretically, essentially, equal to 1/| max Ric,,|. (This is a
generalization of the similar sampling criterion using Gaus-
sian/sectional curvature for surfaces [5] and higher dimen-
sional manifolds [14].) For practical reasons, in this paper we
implemented a variation of this basic idea based upon [18].
The correlation between two points I(x;, y;), I(x;, y;) on the
grayscale surface of the image I = I, used in [18] is given
by

. N 2 H @ = [HGDI -ra;
Ditas 16z = (14 i)

where d;; denotes the (Euclidean) distance between the
pixels p; = pi(x;,y;) and p; = p;(z;,y,), ie. dij =
V/(zi —27)2 + (y; — yj)%, and where k is an empirically
determined parameter, 1 < k& < 10. (For instance, for the
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(b)

(@)

Fig. 1. Sampling and reconstruction of “Lenna”: (a) Original
image; (b) Image sampled using 4096 points; (c) Generalized
Ricci curvature based reconstruction (using 16000 sampling
points); (d) Piecewise-linear reconstruction (cf. [5]).

case of “Lenna”, the best experimentally found value of this
parameter is k = 5.)

Equation (2) suggests another way of computing the cur-
vature of a weighted surface providing the sampling density
required, where Gaussian curvature is used, instead of Ricci
curvature, (as initially theoretically considered in [14], as well
as in the applied context of [5]).

4. EXPERIMENTAL RESULTS

We tested our proposed method on a number of images — nat-
ural images, both standard test images (“Lenna”, “Camera-
man”) and a self-acquired one; 3 common range images and
a cartoon-type image (denoted henceforth as “White”). As it
is illustrated in Figure 1, even without further improvements
(see discussion in Section 5 below) the suggested approach
allows for the reconstruction of the image with accuracy ap-
proaching that of the more classical method employed in [5].
More precisely, while the later allows for better sampling of
highly curved regions, our method allows for a more faithful
reconstruction of more uniform regions, producing less arti-
facts.

The proposed method produces better results on images
having flatter grayscale surface, such as range images — see
Figure 2 and Table 1. This is a consequence of the geometric
fact that, in regions with higher curvature (i.e. with higher
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Fig. 2. Our method produces overall good results for types of
images whose grayscale surface is flat, such as range images —
(a) original image and (b) reconstructed image, and cartoons
— (c¢) and (d), original, respective reconstructed image. The
algorithm may fail at some of the very sharp edges.

“jumps” in the grayscale level) the density of sampling points
has to be proportionally increased. This behavior differen-
tiates natural images from range images and from cartoons
— see Figure 3. It is also the reason why “Lenna”, whose
grayscale surface displays the highly convoluted zone corre-
sponding to the feathers, has a lower compression rate than
the other images. (Cartoons have flat corresponding surfaces,
however they also display intrinsic noise along certain edges,
where high sampling density is generated, thus lowering the
overall compression rate. For instance the compression rate
for “White” is only 3.05.) Additional experiments were per-

Lenna Dog Cameraman Rangel Range2 Range3

3.18 342 3.55 4.14 4.23 4.35

Table 1. Compression Rate measured as (number of sampling
points)/(total number of points in the original image). Note
that range images display an overall better compression rate.

formed based on (2), i.e. using the Laplacian instead of the
Hessian. As can be seen in Figure 4, there is no specific ad-
vantage of one approach over the other: There is little dif-
ference between the results for range images, while for nat-
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Fig. 3. Our method produces better results for types of images
whose grayscale surface is generally flat, such as range im-
ages and cartoons (left), as opposed to natural images (right),
which display more regions of high curvature.

ural images the Laplacian produces less artifacts along sharp
edges, at the price of a somewhat lesser separation of small
details (as indeed expected from a smoothing operator). How-
ever, these results show, perhaps against conventional intu-
ition, that the classical Laplacian provides a satisfactory sam-
pling density, at least for grayscale images.

5. CONCLUSION AND FUTURE WORK

As indicated already in the introduction, the present paper
represents solely a first step in using the generalized Ricci
curvature for Imaging purposes. Clearly, there are many di-
rections along which the current research can be extended.
We list below the most important and promising ones:

e The most important application of the generalized Ricci
curvature is, as already mentioned, to medical images,
such as MRI images. Since, for such images, the den-
sities arise in an intrinsic manner and since, moreover, the
raw, geometric data is itself 3-dimensional, the challenge
—as well as the potential benefit — of the applying the gen-
eralized Ricci curvature are greatly enhanced. However,
it is premature to infer from here that MRI images behave
more like range images, rather than like natural images.

e Relevant 3-dimensional manifolds appear less trivially in
the context of video. Here the 2-dimensional basic images
(i.e. frames) evolve along a third dimension (time). If the
data itself is 3-dimensional (e.g. if acquired, as above, by
medical imaging techniques), the ensuing manifold will
be 4-dimensional. The interest for such manifolds is not
just theoretical, as a possible setting for the implementa-
tion of our proposed method: Since most landmarks cri-
teria used in classical Graphics and Imaging are curvature
based, one can naturally use the generalized Ricci curva-
ture to determine landmarks on images that are acquired
or produced by means of intrinsic densities.

e Another natural application of the sampling method intro-
duced herein is in the field of Graphics. Here the densities
arise as luminosity, degrees of shading, etc. Moreover,
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Fig. 4. Hessian vs. the Laplacian reconstruction: There is no
significant difference between the results for range images —
see (a) for the Hessian based, and (b) for the Laplacian based
reconstruction. For natural images the Laplacian (c) produces
less artifacts along sharp edges, at the price of a somewhat
lesser separation of small details rendered by the Hessian (d).
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while in the present paper we restricted ourself to images,
experiments on meshes where also performed and a de-
tailed exposition of the results is currently in preparation.
Moreover, similar densities, but also non-trivial ones, de-
scribing various texture properties, are also encountered
in Imaging and Pattern Recognition.

It is intuitively clear that if sampling points on a given
manifold are chosen with a high enough sampling density,
it is possible to reconstruct a “nice enough” function de-
fined on the considered manifold. The observation above
has been formally stated and proven in [19], [20] where
the sampling density is given, again, by curvature. It is
only natural to extend this result to weighted manifolds,
using the generalized Ricci curvature. This direction of
study, both on the theoretical and the experimental levels,
represents work in progress.

Apart from this new directions of study, a number of tech-
nical improvements of our proposed method should also
be explored:

In the experiments presented above, no smoothing was
applied to the grayscale surface. However, since the dif-
ferential operators appearing in (1) and (2) are originally
devised in a smooth setting, it is interesting to also verify
the method on smoothened data, e.g. by the application of
various (smoothing) filters, e.g. the basic Gaussian filter.

The choice we made for the computational versions of the
Hessian and Laplacian are, by now means, unique. There-
fore, further experiments with other modes of computing
Hessian and the Laplacian would be interesting. This is
especially true for the case of meshes (i.e. Graphics),
where a discrete, well established, version of the Lapla-
cian exists, as does for the Gaussian curvature.

For compact manifolds (such as appearing in Graphics)
use the more precise sampling density provided in [14]
and extended to weighted manifolds in [15].
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