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ABSTRACT
Particle island methods [1, 2] implement particle fil-
ters in a parallel architecture by dividing the parti-
cle system into islands evolving according to local
particle filters. The islands are however allowed to
interact on the basis of their mean potential. In this
note, focus is set on the double bootstrap algorithm
with adaptive selection on the island level (B2ASIL),
in which island interaction is applied only sparingly
according to a criterion measuring the skewness of
the island weights. Besides discussing, using novel
results convergence obtained in [3], the theoretical
properties of B2ASIL, we also illustrate the perfor-
mance of the algorithm by simulations.

Index Terms— SMC methods, island models,
particle filter, central limit theorem (CLT), paral-
lelization.

1. INTRODUCTION

This paper discusses approaches to parallelization
of sequential Monte Carlo methods (or particle
filters) approximating normalized Feynman-Kac
distribution flows. Interacting particle systems are
used increasingly for sampling from complex high-
dimensional distributions in a wide range of appli-
cations, including nonlinear filtering, data assimila-
tion problems, rare event sampling, hidden Markov
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chain parameter estimation, stochastic control prob-
lems, and financial mathematics; see e.g. [4, 5] and
the references therein. These algorithms evolve,
recursively and randomly in time, a sample of ran-
dom draws, particles, with associated importance
weights, and the Feynman-Kac distribution flow is
approximated by the weighted empirical measures
associated with this evolving sample. The particle
cloud is updated through selection and mutation
operations, where the former duplicates or elimi-
nates, through resampling, particles with large or
small importance weights, respectively, while the
latter disseminates randomly the particles over the
state space and updates accordingly the importance
weights for further selection.

Particle filtering is a computationally intensive
method. Parallel implementation is an appealing
solution to tackle this issue but is not straightfor-
ward due to the particle interaction caused by the
selection operation. In [1] it is proposed to imple-
ment the interacting particle system in parallel as
follows. Instead of considering a single large batch
of N = N

1

N

2

particles, the population is divided
into N

1

batches of N

2

particles. The batches are
in the sequel referred to as islands. Each particle
belonging to a given island will also be referred to
as an individual. Each island evolves according to
the usual selection and mutation operations. The is-
lands may evolve, on different processors, indepen-
dently or may interact through multinomial selec-
tion according to weights proportional to the weight
averages over the different subpopulations. We will
consider two kinds of island interaction: systematic
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resampling or adaptive resampling based on the co-
efficient of variation criterion, leading to the dou-
ble bootstrap algorithm (B2) and the double boot-
strap algorithm with adaptive selection on the is-
land level (B2ASIL) algorithms, respectively, and
where B2 can be viewed as a particular case of the
B2ASIL algorithm. A sequence of Monte Carlo es-
timators (2) is obtained by weighing up, using the
island weights, the self-normalized empirical mea-
sures associated with the different particle islands.

The theoretical analysis of B2ASIL-type algo-
rithms is challenging due to the intricate depen-
dence structure imposed by the island selection
operation and the “double asymptotics” introduced
by N

1

and N

2

, resp. island number and island size.
Nevertheless, even though the islands are allowed
to interact through selection, any two individuals of
the system should become more and more statisti-
cally independent as the number of islands as well
as the size of the islands grow (cf. the propagation
of chaos property of standard SMC methods [6]).
Thus, we may expect a law of large numbers as
well as a CLT to hold when N

1

and N

2

tend jointly
to infinity. Moreover, in analogy with similar re-
sult for standard, single batch SMC methods [see
7, 8, 9], we may expect the rate of such a CLT to bep
N

1

N

2

. This was recently established in [3], and
we survey these results in Section 4.

2. FEYNMAN-KAC MODELS

For a sequence of unnormalized transition kernels
{Q

n

}
n2N defined on some common measurable

space (X,X ) and some probability distribution
⌘

0

2 M
1

(X ), a sequence {⌘
n

}
n2N of Feynman-

Kac measures is defined, for all h 2 F
b

(X ) (here
M

1

(X ) and F
b

(X ) denote the spaces of probabil-
ity measures and bounded measurable functions on
(X,X ), respectively) and n 2 N, by

⌘

n

h =

R
· · ·

R
h(x

n

) ⌘

0

(dx

0

)

Q
n�1

p=0

Q

p

(x

p

, dx

p+1

)

R
· · ·

R
⌘

0

(dx

0

)

Q
n�1

p=0

Q

p

(x

p

, dx

p+1

)

.

(1)
We note that the Feynman-Kac measures satisfy the
nonlinear recursion ⌘

n+1

= ⌘

n

Q

n

/⌘

n

Q

n X.

3. THE B2ASIL ALGORITHM

For each i 2 J1, N
1

K, we let {(⇠
N

(i, j),!

N

(i, j))}N2
j=1

be an island of particles or individuals (the ⇠

N

s),
with associated importance weights (the !

n

s). The
particle weights are assumed to be positive and uni-
formly bounded. Each island is assigned a positive
weight ⌦

N

(i), and the set of weighted islands, i.e.,
{(⌦

N

(i), {(⇠
N

(i, j),!

N

(i, j))}N2
j=1

)}N1
i=1

, is called
an archipelago. Set ¯⌦

N

(i) , ⌦

N

(i)/

P
N1

`=1

⌦

N

(`)

and !̄

N

(i, j) , !

N

(i, j)/

P
N2

`=1

!

N

(i, `).
In this section, our aim is to form, online, a

sequence of archipelagos targeting the Feynman-
Kac flow {⌘

n

}
n2N defined in (1) by subjecting the

archipelagos to a number of elementary operations
such as selection on the island level, selection on
the individual level and mutation. For all p 2 N,
let R

p

be a (normalized) transition kernel on X
such that Q

p

(x, ·) ⌧ R

p

(x, ·) for all x 2 X,
and denote the corresponding Radon-Nikodym
derivatives by w

p

(x, x̃) , dQ

p

(x, ·)/dR
p

(x, ·)(x̃),
(x, x̃) 2 X2. We will focus on the B2ASIL algo-
rithm introduced in [1, Algorithm 3], where selec-
tion on the island level is executed on the basis of
the coefficient of variation (CV; see [10]) given by
CV

2

({⌦
N

(i)}N1
i=1

) = N

1

P
N1

i=1

¯

⌦

2

N

(i)�1. The CV
is in one-to-one correspondence with the efficient
sample size (ESS, proposed in [11] and used in [1]).
The B2ASIL scheme is detailed in Algorithm 1.
Denote by, for n 2 N and h 2 F

b

(X ),

⌘

N

n

h =

N1X

i=1

¯

⌦

(n)

N

(i)

N2X

j=1

!̄

(n)

N

(i, j)h(⇠

(n)

N

(i, j))

(2)
the estimators returned by the B2ASIL algorithm.

4. CONVERGENCE RESULTS FOR THE
B2ASIL ALGORITHM

In the following, let N = N

1

N

2

be the total number
of individuals of each archipelago. The following
results, describing the convergence of B2ASIL as
N

1

and N

2

tend jointly to infinity, were obtained
in [3] through single-step analyses of the differ-
ent selection and mutation operations acting on the
archipelagos.
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/

*

Initialization

*

/

: for i 1 to N

1

do
for j  1 to N

2

do
⇠

(0)

N

(i, j) ⇠ ⌘

0

;
⇠

(1)

N

(i, j) ⇠ R

0

(⇠

(0)

N

(i, j), ·);
!

(1)

N

(i, j) w

0

(⇠

(0)

N

(i, j), ⇠

(1)

N

(i, j));
end
⌦

(1)

N

(i) 
P

N2

j=1

!

(1)

N

(i, j)/N

2

;
end
for p 1 to n� 1 do

/

*

Island selection

*

/

if CV2

({⌦(p)

N

(i)}N1
i=1

) > ⌧ then
for i 1 to N

1

do
I

N

(i) ⇠ Mult({¯⌦(p)

N

(i

0
)}N1

i

0
=1

)

end
else

for i 1 to N

1

do
I

N

(i) i;
end

end
for i 1 to N

1

do
/

*

Individual selection

*

/

for j  1 to N

2

do
J

N

(i, j) ⇠
Mult({!̄(p)

N

(I

N

(i), j

0
)}N1

j

0
=1

)

end
/

*

Mutation

*

/

for j  1 to N

2

do
⇠

(p+1)

N

(i, j) ⇠
R

p

(⇠

(p)

N

(I

N

(i), J

N

(i, j)), ·);
!

(p+1)

N

(i, j) 
w

p

(⇠

(p)

N

(I

N

(i), J

N

(i, j)), ⇠

(p+1)

N

(i, j));

end
⌦

(p+1)

N

(i) 
P

N2

j=1

!

(p+1)

N

(i, j)/N

2

;
end

end
Algorithm 1: The B2ASIL algorithm

Theorem 1 ([3]). For all n 2 N and h 2 F
b

(X ),

⌘

N

n

h

P�! ⌘

n

h as N !1.

Impose the following additional assumption.
(S) For all � > 0, N

1

exp(��N
2

)! 0 as N !1,
Under (S) , which guarantees that N

1

grows only
subexponentially fast with respect to N

2

, one may
derive the following CLT.

Theorem 2 ([3]). Assume (S) . Then for all n 2 N,
the random variable {CV2

({⌦(n)

N

(i)}N1
i=1

) > ⌧}
has a deterministic limit "

n

in probability. More-
over, for all h 2 F

b

(X ), as N !1,
p
N(⌘

N

n

h� ⌘

n

h)

D�! N(0, V
n

(h) + V

"

n

(h)),

where V

0

(h) = ⌘

0

{(h� ⌘

0

h)

2}, V "

0

= 0, and

V

n

h =

n�1X

`=0

⌘

`

R

`

{w2

`

Q

`+1

· · ·Q
n�1

(h� ⌘

n

h)

2}
(⌘

`

Q

`

· · ·Q
n�1 X)

2

,

V

"

n

h =

n�1X

`=0

n�1X

p=`+1

"

p

⌘

`

R

`

{w2

`

Q

`+1

· · ·Q
n�1

(h� ⌘

n

h)

2}
(⌘

`

Q

`

· · ·Q
n�1 X)

2

.

Note that the B2 algorithm, which selects sys-
tematically the islands, is a particular case of
B2ASIL algorithm for which ⌧ = 0 (and hence
"

n

= 1) for all n 2 N⇤. We may hence deduce the
asymptotic variance �

2

n

(h) of the B2 algorithm:
P

n�1

`=0

(n�`)⌘`R`

{w2

`

Q

`+1

· · ·Q
n�1

(h� ⌘

n

h)

2}
(⌘

`

Q

`

· · ·Q
n�1 X)

2

.

In this part we discuss conditions under which
interaction on the island level is desirable. The case
of independently evolving islands is a particular
case of the B2ASIL algorithm with ⌧ = 1 (and
hence "

n

= 0 for all n 2 N). We hence deduce,
from Theorem 2, that the asymptotic variance of the
estimator non-interactive bootstrap filters is, when
N is large, V

n

/N , i.e., inversely proportional to N .
In addition, it was shown in [1] that the asymptotic
bias of this estimator is B

n

/N

2

, i.e., inversely pro-
portional to N

2

and where B

n

is some number de-
pending on the model, which is presumably defined
in [1]. Consequently, island interaction implies an
additional, positive variance term while decreasing
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the bias, and a trade-off between bias and variance
has to be made to decide when island interaction is
beneficial. For this purpose, we compare the mean
squared errors (MSE) when the islands interact and
when they are kept independent. The MSE for in-
dependent islands is given by V

n

/N + B

2

n

/N

2

2

,
whereas the MSE of the B2ASIL algorithm is given
by (V

n

+ V

"

n

)/N . Therefore,
Vn+V

"
n

N

<

Vn
N

+

B

2
n

N

2
2
, N

2

<

B

2
n

V

"
n
N

1

.

Consequently, the B2ASIL algorithm outperforms
a bank of independently evolving bootstrap filters
when the number of particles N

2

within each island
is small compared to the number of islands N

1

; the
interaction reduces the bias (which is independent
of N

1

when the islands are kept independent). On
the contrary, when N

2

is larger than N

1

, the vari-
ance increase introduced by the interaction on the
island level may be larger than the bias reduction.

5. APPLICATION

We consider the stochastic volatility model
X

p+1

= ↵X

p

+ �U

p+1

, Y

p

= � exp(X

p

/2)V

p

,

where X

0

⇠ N (0,�

2

/(1 � ↵

2

)), {U
p

}
p2N and

{V
p

}
p2N are independent sequences of mutually

independent standard Gaussian random variables
(independent of X

0

). We based our simulations on
n = 100 observations generated under the model
dynamics (↵,�,�) = (0.98, 0.5, 1). We estimate
the means of the predictive distributions X

p

| (Y
0

=

y

0

, . . . , Y

p�1

= y

p�1

), for p 2 J0, 100K, a problem
that can be cast into the Feynman-Kac framework
by setting, for all p 2 N,
Q

p

(x

p

, dx

p+1

) =

1

2⇡��

exp

⇣
y

2
p exp(�xp)

2�

2 �

�xp

2

� (xp+1�↵xp)
2

2�

2

⌘
dx

p+1

.

As a reference, we computed such predictive expec-
tations using a single run of the bootstrap filter with
10

6 particles. Figure 1 displays box plots based on
250 replicates of the different algorithms for dif-
ferent values of N

1

and N

2

. Table 1 reports the
average numbers of island interactions for B2ASIL
over the 250 simulations. These numbers should be
compared to n = 100 for B2, since island interac-
tion is systematic in this case. For a given number of
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Fig. 1. Comparison of different interactions across
the islands for the Stochastic volatility model
(1) Independent bootstraps; (2) B2ASIL; (3) B2.

PPPPPPPPN

2

N

1 10 100 1000

1 30.1 35.14 36.108
10 10.9 12.29 12.096

100 1.5 1.86 1.956
1000 0 0 0

Table 1. Number of island interactions for the
B2ASIL algorithm.

islands, the number of island interactions decreases
for B2ASIL when the island size grows. Moreover,
as soon as the number of particles N

2

of each island
is large enough, B2ASIL is no longer resampling
the islands. Figure 2 displays CPU times for a
N

2

= 100 and different numbers of islands. CPU
time for the B2ASIL is bigger than for independent
bootstraps (due to the additional resampling step),
and increases proportionally to the island number.
Also notice that the parallel architecture of B2ASIL
reduces significantly CPU times compared to a
classic bootstrap with N

1

N

2

particles.

6. STABILITY OF THE B2 ALGORITHM

When studying the numerical stability of the B2 al-
gorithm we will work under the following strong
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mixing condition; see [3, Section 4.5] for consid-
erably weaker assumptions.

(M) (i) There exist constants 0 < �� < �

+

< 1
and ' 2 M

1

(X ) such that for all p 2 N,
x 2 X, and A 2 X ,

��'(A) M

p

(x,A)  �

+

'(A).

(ii) w

+

, sup

p2N kwp

k1 <1.

(iii) c� , inf

(p,x)2N⇥X Q

p X(x) > 0.
The assumption (M)(i) is rather restrictive and re-
quires typically the state space X to be a compact
set. Still, it plays a vital role in the literature of SMC
analysis [6, 12]. On the other hand, the weaker as-
sumption (M)(ii) is satisfied for most applications
and (M)(iii) does not require the potential functions
to be uniformly bounded from below; the latter is
a condition that appears frequently in the literature.
Under (M), denote ⇢ , 1 � ��/�+

; then we can
derive the following explicit time uniform bound on
the asymptotic variance. This shows that the B2 al-
gorithm stays numerically stable in the long-run.

Corollary 3. Suppose (M). Then for all n 2 N and
h 2 F

b

(X ),

�

2

n

(h)  w

+

osc

2

(h)

(1� ⇢)

2

(1� ⇢

2

)

2

c�
.
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