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ABSTRACT 

 
A coordinated dynamic sensor network of autonomous 
underwater gliders to estimate 3D time-varying environ-
mental fields is proposed and tested. Each sensor performs 
local Kalman filter sequential field estimation. A network 
of surface relay nodes and asynchronous consensus are 
used to distribute local information among all nodes so 
that they can converge to an estimate of the global field. 
Tests using data from real oceanographic forecast models 
demonstrate the feasibility of the approach with relative 
error performance within 10%. 
 

Index Terms—Sensor networks, consensus, distrib-
uted estimation, autonomous underwater vehicles. 
 

1. INTRODUCTION 
 
This work describes a distributed algorithm to estimate 3D 
slowly varying environmental spatial fields (such as sea 
water temperature) by a fleet of autonomous underwater 
gliders (agents) equipped with sensors that acquire field 
measurements [1][2]. It is assumed that direct communi-
cations between agents are not possible. An agent can 
sporadically emerge and communicate with a surface node 
to transfer information. The decentralization of the estima-
tion algorithm is achieved by integrating the fleet with a 
network of surface relay nodes (RNs) communicating 
with the agents by satellite/radio links. The RNs act as 
information gateways to asynchronously distribute the 
local information collected by one sensor to all the others. 
The global estimation of the spatial field is, in this way, 
iteratively computed and somehow shared by all the nodes 
of the network. The estimated field is retrieved by interro-
gating a node when this is reachable by the user.  

The network is characterized by a random switching to-
pology with asynchronous communications. The infor-
mation diffusion is based on the asynchronous consensus 
protocol among sensors and the RNs [3], [4], [5], [6]. The 
network sampling strategy is adaptive: the path of an 
agent of the network is optimized so that the agents are 
forced to move into the most informative regions, where 
the estimate is more inaccurate [7]. 

The architecture is suitable for large-scale networks of 
autonomous underwater gliders (AUGs), a vehicle that 

flies through the ocean by controlling its buoyancy [1]. 
These vehicles typically perform underwater missions 
covering large areas and for long periods of time (even 
months). They form a multi-payload platform carrying on 
board several scientific sensors at the same time such as 
conductivity, temperature and depth (CTD) sensors, sea-
water optical parameter sensors and acoustic hydro-
phones. They can communicate to a command and control 
center through a satellite/radio link only when at sea sur-
face and cannot communicate underwater with other vehi-
cles or gateways at very long range through an acoustic 
link due to energy budget and communication equipment 
constraints. Moreover, due to environmental factors, sur-
facing phases of the agents cannot be easily synchronized. 

This work is based on the seminal papers [8] and [9] on 
spatial field distributed estimation by centralized as well 
as decentralized dynamic sensor networks. The papers do 
not take into account networks with intermittent commu-
nication links. The novel contribution of this paper con-
sists in the design and the application of an adaptive dy-
namic network for 3D ocean field estimation in a distrib-
uted way by a fleet of AUGs exchanging information 
asynchronously through the RN network. The paper aims 
at evaluating the performance of the system for some 
specific scenarios. The scenario here reported is based on 
a real 3D oceanographic forecast model of the seawater 
temperature, the Navy Coastal Ocean Model (NCOM) 
[10]. The achieved mean steady state relative error be-
tween the estimated and the true field is within 10%. 

The paper is organized as follows. Section 2 provides 
the overview of the system, including single agent 
Kalman filter (KF) estimation, agent control law, and a 
simple kinematic model of the glider. In Sect. 3, the con-
sensus protocol is detailed. Section 4 provides simulation 
results while Sect. 5 draws conclusions and gives ideas for 
future work. 
 

2. AGENT LOCAL ESTIMATION 
 

This section provides an overview of the local field es-
timation algorithm performed by each sensor. The estima-
tion procedure relies on the expansion of the spatial field 
on a basis of known spatial functions, weighted by un-
known coefficients, which are in general time variant. The 
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spatial field to be estimated can be written as [8]: 

 
1

( , ) ( ) ( ) ( ) ( )
LT

j jj
g t t c t 


   r r c r , (1) 

where r is the coordinate vector of the region of interest, t 
is the time variable, 

1
( ) [ ( ),..., ( )]T

L
t c t c tc  is the real 

coefficient vector and 
1

( ) [ ( ),..., ( )]T
L

  r r r  is the 
vector of the base functions at a given position r. Given 
the base vector, ( ) r , the problem of estimating the sca-
lar field, ( , )g tr , is equivalent to estimate the coefficient 
vector ( )tc . In this work, we assume that the coefficient 
vector is constant or slowly time-varying, i.e. ( )t c c . 
The base functions in (1) are assumed to be of the radial 
type. In particular, a set of Gaussian-like radial basis func-
tions (RBF), 2( ) exp( || || / )

j j
   r r r , is chosen 

with a given spread parameter   (constant for all the 
functions) and centers rj located on a regular grid in the 
spatial region of interest. 

The agent local sequential estimation of the field is per-
formed by a Kalman filter in which the coefficient dynam-
ic is modeled by a linear state space equation shared by all 
the agents (AUGs) in the network: 

 
, , 1 ,i k i k i k c c n , (2) 

where 
,i k

n  are Gaussian distributed independent noise 

vectors with covariance matrix 
2 2

, 1, , , ,
diag( , , )

i k i k L i k
 Q  . The matrix 

,i k
Q  is a free 

parameter that can be tuned to adjust the velocity at which 
the system adapts its estimate to the true dynamic of the 
coefficients [11]. The tradeoff to be considered is between 
filtering response of the system and estimate residual error 
[11]. 

Assuming a network composed of N sensors, the i-th 
sensor, for i=1,…,N, acquires at each time step a noisy 
measurement yi,k of the field. According to (1), the meas-
urement equation of the i-th sensor can be expressed as 
follows: 

 
, , , ,

( )T
i k i k i k i k

y e  p c , (3) 

where 
,i k

p  is the position vector of the i-th sensor at time 

step k and 
,i k

e  is the scalar Gaussian measurement noise, 

independent from 
,i k

n , with zero-mean and variance 2
,i k

 . 

Each sensor runs the Kalman filter prediction and update 
steps to provide the sequential estimate, 

,î k
c , of the coef-

ficient vector and its covariance matrix, 
,

ˆ
i k

C , to an RN. 

 
3. DISTRIBUTED CONSENSUS ALGORITHM  

 
This section describes how local estimates from each 

network agent can be exploited to achieve global field 
estimation in a distributed way. The resulting network 
architecture has a switching topology [12] and is based on 

the consensus paradigm in which the information is dif-
fused among the agents through the RNs that act as infor-
mation gateways. 

In the proposed network model, agents can communi-
cate with a RN at random instants but cannot communi-
cate among each other. Each agent sequentially estimates 
the coefficient vector by means of a KF from local field 
measurements and updates its position applying a control 
law by using the local prediction of the coefficient esti-
mate covariance matrix (see Section 4). An agent trans-
mits its local coefficient vector estimate and covariance to 
a connected RN when at surface (no field measurements 
are provided to RNs). The RN distributes its estimates 
(coefficient vector and covariance) to the other RNs and 
to the connected agents. The RN updates its estimates 
through the average consensus algorithm ([4], [5]) by 
combining the local agent’s estimates, when available, 
and the estimates received by the other RNs. Agents con-
nected to an RN update their local estimates through the 
average consensus by fusing the RN estimates with the 
local ones. 

The protocol allows the global information to intermit-
tently flow into the network through RNs and at the same 
time promotes a collaborative behavior among agents. 
Realistic numerical simulations show that agent and RN 
estimates statistically converge to the true global coeffi-
cient vector reaching the consensus. 

 
Fig. 1. Star network topology with time varying link weights. 

The network of agents and RNs are modeled as an undi-
rected graph with the topology in Figure 1. The whole 
network has a set of 

r
N N  nodes, 

{1,2,..., }
r

N N   , with { ,..., }
r

N N N  being the 
indices of the RNs, and an adjacency matrix given by: 

 r

r r r

N N N N
T
N N N N

 

 

 
   
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I 1
A
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 (4) 

which defines the set of all possible graph edges 

,
{( , ) | 1,  , }

i l
i l A i l      (

N NI  is the N N  identi-

ty matrix, while 
rN N1  and 

r rN N1 are the 
r

N N  and 

r r
N N  matrix of all ones, respectively). If the topology 
is fixed, the graph in (4) is strongly connected. Actually, 
the structure of the network is dynamic i.e. at each time 
step k, there is a subset 

k
  of edges which are active, 

where an edge ,
k

i l   is active if node i can communi-
cate with node l. The i-th node applies the consensus algo-
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rithm as follows: 
 

,
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where 1
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ˆ ˆ
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
 D C  is the information matrix, 
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ˆˆ ˆ

k k k  g D c  

is the information vector, 
,i k

  is the set of node neighbors 

of the i-th node at time step k (the node i is included in the 
set) and 

, ,i l k
w are weighting parameters. Once the consen-

sus has been applied, the updated coefficient estimate and 
the associated covariance for the i-th node are 

1
, , ,

ˆˆ ˆ
i k i k i k

c D g  and 1
, ,

ˆ ˆ
i k i k

C D , respectively. The fusion 

rules (5) and (6) are used in the so called information 
consensus filter [13] and are optimum in the minimum 
mean square error (MMSE) and maximum likelihood 
(ML) sense in the case the sensor estimates are independ-
ent [14]. As this hypothesis is not always true, the fusion 
rule is in general sub-optimal, but with the advantage of 
having a reduced complexity. The choice of the weights in 
the consensus update is crucial for guaranteeing certain 
properties and asymptotic convergence. In particular, in 
this work, the Metropolis weights are considered: 
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with 
, ,

| |
i k i k

d    the cardinality of 
,i k

 . This choice is 

average preserving and for certain problems of distributed 
consensus, it provides asymptotic convergence to a global 
solution under mild conditions on the sequence of sets of 
active edges 

k
 . 

The consensus update phase is completely asynchro-
nous in the sense described in [17]. The i-th field sensor 
applies consensus if it is connected to an RN at k=ki. With 
the given network topology, the direct communication 
between glider agents is not possible. However, sensors 
indirectly combine their estimates among each other 
through RNs. The estimate at RNs allows the diffusion of 
the information through the network and the convergence 
of any local agent estimates to the global statistic. At the 
same time, the glider applies correction to the navigation 
heading according to the control law in Sect. 4. The next 
update (i.e. the next glider surfacing) is at ki+Δi where Δi 
is a random variable with a given distribution. The switch-
ing topology of the network is determined by the fact that 
a glider cannot communicate during the underwater phase. 
The surface phases of the gliders, and by consequence 
communications and dynamic control, cannot be synchro-
nized in a practical way, determining the asynchrony [15] 
of the whole system and the randomness of the adjacency 
matrix of the network. The distribution of Δi is used to 
model asynchrony and connectivity randomness, and 

determines the probability law of the time varying adja-
cency matrix and the degree of convergence of each net-
work node to the global solution. In this work, a glider 
comes at surface independently from the other ones and Δi 
has a uniform discrete distribution, with parameters as 
specified in Sect. 5. A deeper insight into the convergence 
properties of consensus algorithms in asynchronous and 
switching topology networks can be found in 
[12][15][16][18][19]. In the switching topology case, if 
the union of the connectivity graphs in the observation 
interval is strongly connected, the consensus algorithm 
asymptotically converges to the true solution as demon-
strated in [18]. 
 

4. NETWORK CONTROL 
 

Following [8], the local sensor control is obtained by 
updating the next agent positions to minimize the average 
predicted covariance of the scalar field estimate. Using the 
coefficient covariance matrix from the KF, this quantity is 
given by: 
    1

ˆ T

k k
A

J dA


   r C r , (8) 

where the integration is over the area of interest, A, in 
which the agents are constrained to operate. As in [5], the 
position 

,i k
p  of the i-th agent is given by 

 
, , 1 , 1i k i k i k  p p f , (9) 

where the control input 
, 1i kf  is implemented by a gradient 

control law as follows: 

  
, 1
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J
S




 
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, (10) 

where 

    1
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k k T
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J
dA



 


  

 
C

r r
p p

, (11) 

and S is a constant gain (see [8] for the details of the con-
trol law calculation given the base functions). In general, 
the control law (9) can also include a repulsive potential 
additive term to provide a good covering of the area to be 
explored and to avoid collisions among agents. This term 
requires the knowledge of the position of the other agents 
that can be provided through the RN network. Obviously, 
the network state at a given time step can be partially 
known to an agent due to the asynchrony of the system. 
The impact of this on the overall system performance will 
be investigated in future works. 

The dynamic of the agents in (9) is adapted, as speci-
fied below, to model the kinematic of an AUG that navi-
gates at a constant speed (in absence of sea current) with a 
constrained vertical plane dynamic and a waypoint guid-
ance system. Generally, a glider moves through a 3D 
space following a saw-tooth shape trajectory (see Fig. 2) 
in the vertical plane. The trajectory is composed of a cer-
tain number of dive/climb cycles in the interval between 
two surfacing phases of the glider. The information, col-
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lected during each dive/climb cycle, is stored and finally 
transmitted during the surfacing phase. 

 
a) b) 

Fig. 2. Glider mission plan: a) way points and lane lines in the 
horizontal plane, and b) yo-yo trajectory in the vertical plane. 

The glider dynamic model considered in this work as-
sumes a constant velocity without water current disturb-
ances, constrained to follow a yo-yo trajectory in the ver-
tical plane with given climbing and diving target depths 
[15]. The glider navigates in the vertical plane along a yo-
yo segment with a given pitch angle φ. The control vector 
(10) is normalized and multiplied by the total glider speed 
V to take into account the constant speed constraint: 
  

, , ,
/ || ||

i mB i mB i mB
Vf f f . (12) 

The 2D components of the control law (9) are applied at 
each glider surfacing to optimally change the vehicle 
direction in the horizontal plane. 
 

5. NUMERICAL ANALYSIS 
 

The system is tested by simulating one RN and a net-
work of underwater gliders equipped with seawater tem-
perature sensors. The true field is a series of consecutive 
3D forecasts of sea water temperature (with 3h sampling 
period) of the Navy Coastal Ocean Model [10], spanning 
an observation period of 7 days. The model was provided 
by the Naval Research Laboratory-Stannis Space Centre 
(NRL-SSC), during the STO-CMRE 2011 Recognized 
Environmental Picture cruise trial (REP11) in the Medi-
terranean Sea. The data set used in the simulation repre-
sents a sub-volume of about 60 by 60 Km in the horizon-
tal plane by 100 m along depth. The horizontal resolution 
is about 2 by 2 Km. The initial depth levels (not regularly 
spaced) have been linearly interpolated between 0 and 100 
m. The resulting regular data grid has a size of 30×30×30 
samples. All spatial coordinates are normalized between 0 
and 1 for convenience. The basis function dictionary is of 
343 Gaussian RBFs (i.e. the state coefficient vector c has 
343 entries) arranged on a 7×7×7 3D regular sub-grid of 
the original 30×30×30 NCOM model grid. The RBF co-
variance matrix is V=0.025I3, constant for all the diction-
ary functions. The RBF spread parameter was chosen 
empirically by roughly estimating the spatial scale of the 
main oceanographic features present in the data. The 
measurement equation of each agent is (3) with measure-
ment noise variance ρk

2=0.001. The network includes 
N=15 AUGs with agent speed of 0.6 m/s, pitch angle 
equal to φ=26o and sampling rate of T=6 s. The time delay 
between adjacent surfacing phases of an agent is modeled 
as a uniform random variable, ( , )U      

, to 
take into account random fluctuations due to unknown 

environmental conditions affecting the agent navigation. 
The average delay η is typically between 1-3 hours. δ is 
set to 15 min as estimated from a set of real AUG naviga-
tional data. 

 
a)        b) 

Fig. 3. a) NCOM sea water temperature field variations (in oC) 
after 7 days and b) reconstructed field (with vehicle tracks). 

Fig. 3-a) shows an example of the true NCOM field at 
the end of the observation period. Without loss of general-
ity, the spatial/temporal mean of the field has been sub-
tracted from the original data set. Fig. 3-b) presents the 3D 
view of the reconstruction of the field at the end of the 
observation period showing a good match with the true 
field in terms of main oceanographic features both in the 
horizontal plane and along the vertical water column. The 
results are for η=1h.  

Fig. 4-a) shows vertical profiles of the true NCOM field 
along the trajectory of the agent 1 while Figure 4-b depicts 
the estimated profile by the same agent. The main ocean-
ographic features are well resolved as well as the thermo-
cline separating water masses with different characteris-
tics. 

 
a) b) 

Fig. 4. a) NCOM sea water temperature field vertical profile 
along agent 1 track; b) estimated field along the same tracks. 

Fig. 5-a) shows sensor and RN field estimates versus 
time (sub-sampled every 3 hours) for a given spatial posi-
tion (x=0.79, y=0.66, z=1.00) compared with the true field 
(in green). The system starts to track the field variations 
after a transition phase of about 18 hours. Fig. 5-b) shows 
the spatial field RMSE versus time for different values of 
N and η. The graph can provide some indications about 
the best parameters to be used in a real scenario (having 
the same time/spatial scale and variability as the simulated 
one) in order to achieve the best possible performance at 
an affordable cost (with respect to the number of sensors 
and number of transmissions in the observation period). 

 
a)            b) 

Fig. 5. a) Sensors and RNs estimated field at a given position, 
sub-sampled every 3 hours. b) Field RMSE versus time. 

In particular, the number of sensors significantly affects 
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the error and the adaptation capability of the system for 
N<15. For N≥15, at steady state, the network adaptation 
allows the network to keep the RMSE value close to 0.5 
oC with η that does not significantly affect the perfor-
mance. The spatial percentage error of the field after the 
transitory phase and for N≥15 is close to 10%. 
 

6. CONCLUSIONS 
 

In this paper, a coordinated dynamic sensor network of 
autonomous underwater gliders to estimate oceanographic 
3D spatial scalar fields is proposed and tested on realistic 
scenarios. Each agent performs the local estimation of the 
field statistics by a KF that processes local field measure-
ments. The local estimates of an agent are updated 
through an asynchronous consensus algorithm, exploiting 
the local estimates of the others so that all nodes converge 
on average to the true global field. The asynchronous 
information exchange and fusion is handled by a sub-
network of RNs communicating with agents at surface. 
An agent uses updated estimates to locally control its 
position and acquire field measurements in the most in-
formative areas and adaptively track field variations. 

The system has been tested on scenarios built on real 
oceanographic forecast models. The scenario here pre-
sented simulates a glider fleet mission of 7 days using 3D 
time-varying seawater temperature data provided by the 
NCOM forecast model for a Mediterranean Sea area, in 
the framework of the REP11 experiment. For typical fleet 
operational parameters (i.e. 15 agents and 1-3 hours sur-
facing period) and surveyed area size (60×60 Km horizon-
tally and 100 m vertically) the average performance 
achieved in terms of relative error at steady state is within 
10%, showing good qualitative convergence and tracking 
properties. 

Future work includes: i) the on-line estimation of base 
functions unknown parameters, such as the mean and the 
covariance of Gaussian RBFs, ii) an investigation on the 
effects of the water current on the agent navigation and iii) 
an in depth investigation on the algorithm convergence 
and convergence rate properties [18][19]. 
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