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ABSTRACT
The goal of this work is to recover road networks from aerial
images. This problem is extremely challenging because roads
not only exhibit a highly varying appearance but also are usu-
ally occluded by nearby objects. Most importantly, roads
are complex structures as they form connected networks of
segments with slowly changing width and curvature. As an
effective tool for their extraction, we propose to resort to a
Conditional Random Field (CRF) model. Our contribution
consists in representing the prior on the complex structure of
the roads by higher-order potentials defined over centerline
cliques. Robust PN -Potts potentials are defined over such
relevant cliques as well as over background cliques to inte-
grate long-range constraints within the objective model en-
ergy. The optimal solution is derived thanks to graph-cuts
tools. We demonstrate promising results and make qualitative
and quantitative comparisons to the state of the art methods
on the Vaihingen database.

Index Terms— Road network, higher-order CRF, center-
line cliques, graph-cuts, aerial images.

1. INTRODUCTION

Automatic network extraction has a wide application in re-
mote sensing, medical imaging and computer vision. In
particular, road network extraction in urban environments is
notably a challenging problem because of not only the wide
intra-class appearance variations, but also the strong occlu-
sions due to nearby objects such as buildings, trees and their
related shadows. Moreover, many background objects have
road-like appearance as they are made of similar materials
(e.g. concrete roofs). As a consequence, the detector may
be prone to false positive misclassification and, it could risk
to miss many network connections because they are broken
by many gaps. Most existing methods [1–5] derive model
road networks from ad-hoc rules and, most often, they rely on
bottom-up processes to extract them. Such methods can per-
form well for rural and suburban areas where the background
is relatively homogeneous with few shadows and occlusions.

For more complex environments such as the urban ones, a
large number of methods [6–8] recover a complete network
structure only after detection through a post-processing. For
instance, in [6, 8], the post-processing consists in firstly re-
moving false segments, then a region linking is performed to
eliminate the discontinuities between road segments. Sim-
ilarly, in [7], a deep belief network is trained to fill small
gaps, and improves the quality of the pixel classification.
An alternative strategy consists in resorting to probabilis-
tic models. In this respect, the challenge is to include the
prior information about roads. Indeed, road segments are
thin linear structures with smoothly changing curvature, and
road segments connect each others at junctions and cross-
ings. To the best of our knowledge, few reported works
have accounted for such prior. In [9–11], powerful object-
based probabilistic representations based on Marked Point
Processes (MPPs) integrate priors on the connectivity and the
intersection geometry of roads. Although MPPs are a power-
ful tool to impose high-level topological constraints, the in-
ference has a high computational cost as it relies on Markov
Chain Monte Carlo samplers or simulated annealing type
methods. In [12], minimum cost paths are used to connect
seeds with high foreground scores and recover the network
structure of roads. Promising results are obtained on curvilin-
ear structures. However, the imposed geometric constraints
are still relatively local since they bear on consecutive edge
pairs. Recently, in [13, 14] a higher-order Conditional Ran-
dom Field (CRF) formulation was proposed for road network
extraction. The structural prior is represented by long-range
cliques with robust PN -Potts potentials [15]. More precisely,
in [13], higher-order cliques are either in form of elongated
straight segments or T and Y junctions. Straight segments are
obtained by connecting randomly two nodes whereas junc-
tions are obtained by connecting randomly central nodes to
three additional ones such that the sampled nodes have suffi-
ciently high road likelihoods. However, too many irrelevant
cliques are generated since a straight segment connecting
randomly road nodes does not coincide mostly with a road
segment. To overcome this drawback, minimum-cost paths
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are embedded in a higher-order CRF framework in order
to construct an explicit prior about the shape of roads [14].
Nevertheless, important properties of the road network (e.g.
T-junctions and crossings) that could help to obtain a com-
plete road network [11] are still missing.
In this work, we extend the baseline CRF models reported
in [13, 14] by means of two main contributions. Firstly,
centerline-driven road cliques are constructed in order to en-
compass different possible configurations of road segments,
i.e. straight segments, blobs and junctions. Secondly, robust
PN -Potts potentials, defined over both road cliques and large
background cliques, are computed using a boosted dense
feature histogram-based classifier. Thereby, the label consis-
tency is enforced by the integration of contextual priors and
feature distributions. The figure 1 shows the block diagram
of the proposed method. The paper is organized as follows.
In Sec. 2, we describe the new higher-order CRF model built
over these relevant cliques for road network extraction. In
Sec. 3, we provide both qualitative and quantitative evalua-
tions on the Vaihingen database of aerial images. Conclusions
and future work are presented in Sec. 4.

Fig. 1. The block diagram of the proposed method.

2. HIGHER-ORDER CRF MODEL FOR ROAD
NETWORK EXTRACTION

We pose road network extraction problem as a pixel-wise la-
beling with two classes ”road” and ”background”. We aim
at defining a higher-order CRF model whose potentials incor-
porate appearance, shape, and context information as well as
long-range contextual interactions to extract efficiently road
networks. More precisely, this model reflects the prior as-
sumptions about the roads, as they correspond to connected
networks of smooth, elongated segments which meet at junc-
tions and crossing. Likewise [15], the optimal labeling x =
{xi} of pixels i should minimize the Gibbs energy E, defined
as a weighted sum of unary, pairwise and higher-order poten-
tials:

E(x)=λu
∑
i∈V

ψi(xi)+λp
∑

(i,j)∈ε

ψij(xi, xj)+λh
∑
c∈C

ψc(xc)

(1)
where V corresponds to the set of all pixels, ε is the set of all
edges connecting the neighboring pixels and, C refers to the

set of cliques. The unary potentials ψi of the random field
capture the local visual appearance of pixels, while the pair-
wise potentials ψij encode a smoothness prior over neigh-
boring variables. As regards the higher-order potentials ψc,
they penalize inconsistent labeling by considering high-level
dependencies between the clique variables. In particular, by
means of long elongated centerline cliques, the higher-order
potentials ensure the continuity of road networks and thus cut
down gaps between road segments.

2.1. Features

It is well known that the raw RGB values of pixels alone are
not very discriminant and, fail to produce an accurate object-
class segmentation. To this end, several well-engineered fea-
tures were defined for semantic segmentation of objects in im-
ages [16]. In order to ensure an efficient recognition, sophis-
ticated potential functions are defined based on color, texture,
location and shape features [14, 15, 17, 18]. In our work, we
adopt the multi-feature extension [18] of TextonBoost [17]. A
set of appearance features (Lab-color, textons [19], local bi-
nary patterns [20], multi-scale SIFT [21] and opponent SIFT
[22]) is densely extracted. All features except Lab-color are
quantized to 150 clusters using standard K-means clustering
to construct the visual words.

2.2. Unary potentials

The unary potentials ψi measure how well the visual appear-
ance of a pixel i matches a label xi. Our model consists of
respectively color and shape-texture unary potentials [17]:

ψi(xi)=− log(pC(xi; yi,ΘC))−log(pST(xi;y,ΘST)) (2)

where pC (resp. pST) is the probability that label xi is as-
signed to pixel i given its color feature yi (resp. the extracted
dense multiple features y). Theses probabilities are outputted
by the learned classifiers of parameters ΘC and ΘST respec-
tively. The unary color potentials capture the color distribu-
tion of object classes by means of Gaussian Mixture Models
in the Lab color space. The unary shape-texture potentials re-
flect the shape, texture and appearance context of each class.
They are estimated by boosting weak classifiers based on a
set of shape filter responses. These dense feature filters are
defined by triplets [feature type f , feature cluster t, rectangu-
lar region r] and their feature response vf[t,r] (i) for a given
pixel i. The latter measures the number of features of type
f belonging to cluster t in the region r associated to i. The
pool of weak classifiers contains a comparison of responses
of dense-feature shape filters against a set of thresholds. Fur-
ther details about this procedure could be found in [17]. At
this level, it is worth pointing out that we have considered in-
dependent distributions for color and shape-texture features
in order to achieve robust model in challenging cases where
the road segments and background have a similar appearance.
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In this way, if one of the cues (color, shape-texture) is not
enough discriminant, we rely on the other one to prohibit one
distribution to leak into the other one.

2.3. Pairwise potentials

The pairwise potentials ψij encode a smoothness prior which
promotes neighboring pixels to share the same label. They
have the form of a contrast sensitive Potts model [15, 17]:

ψij(xi, xj)=

{
0 if xi =xj ,

g(xi, xj) otherwise,
(3)

where g(xi, xj) = exp
(
−β ‖yi − yj‖2

)
is an edge feature

based on the difference in colors of neighboring pixels. The

parameter β =
(

2〈‖yi − yj‖2〉
)−1

is an image-dependent
contrast term, where 〈.〉 denotes an average over the image.

2.4. Higher-order potentials

The higher-order potentials ψc promote all pixels of a clique
to have the same label. In our work, we have focused on a
robust PN -Potts model [15] defined by:

ψ(xc)= min
l∈{0,1}

(
γmax
c , γlc+

∑
i∈c

klc [xi 6= l]

)
(4)

where [xi 6= l]=1 if true and 0 otherwise. For a clique c ∈ C,
the potential has a cost of γlc ≤ γmax

c if all the pixels in the
clique take the label l. However, each pixel whose label is
different of l is penalized by an additional cost of klc. The
maximum cost of the potential is truncated to γmax

c . For in-
stance, if in one hand, there is enough road evidence within a
clique, then its member pixels are assigned to the road class.
Therefore, gaps caused by false negatives within a clique are
corrected. On the other hand, if there is not enough total
road evidence in a clique, then the related pixels are assigned
to the background. As a result, false positive are removed.
In [13, 14], the costs {γmax

c , γlc, k
l
c} are assumed constants

for labels l ∈ {0, 1} and for all the cliques c ∈ C. In this
case, the higher-order potentials encourage all the variables
in a clique c to take the same dominant label, while omitting
the clique appearance. Nevertheless, it is well known that
the distributions of pixel-wise feature responses are very use-
ful for discriminating strongly object-classes. Thereby, moti-
vated by [18], we learn a binary boosting classifier over the
normalized histograms of multiple clustered pixel-wise fea-
tures {Hf

t }, to capture the clique appearances for both road
and background classes. The negative log-likelihood of the
classifier is incorporated into the energy as:

γlc =− log
(
p
(

xc = l; {Hf
t (c)}

))
|c|, (5)

γmax
c = |c|αh, klc =

γmax
c − γlc
0.1|c|

, (6)

Fig. 2. (a) an aerial image, (b) dectection centerlines and sam-
ples of higher-order cliques, (c) the detector’s symmetry re-
ponse, and (d) the learned classifier’s likelihood.

where αh is a truncation parameter and, |c| denotes the car-
dinality of the clique c.

2.5. Clique construction

The set C of higher-order cliques should contain relevant
cliques for higher-order potentials. On the one hand, they
should be shaped, for the road class, like long elongated sets
of pixels, putted usually together in junctions. On the other
hand, they should form large regions, as far as possible, for
the background. To this end, we detect for an image the
centerlines, and we perform multiple segmentation of it. The
road and background cliques are then derived by accounting
for both the centerlines and the segmentations.
• Centerline detection: For an aerial image, we extract
firstly centerlines using the symmetry axes detector [23].
More precisely, this detector focuses on ribbon-like struc-
tures, i.e. contours marking local and approximate reflection
symmetry. In order to remove non-road ones, we apply
a non-maximum suppression on the detector’s symmetry
response, which is weighted by the learned classifier’s like-
lihood (Fig .2(c) − (d)). Then, we perform a hysteresis
thresholding to extract the road centerlines. D-centerlines
refer to these detected centerlines (Fig .2(b)).
Generally, many gaps among them appear because of the
occlusions and missing detections. However, the main char-
acteristic of the roads is their network structure: a road
segment is usually connected to other road segments on both
sides, sometimes connected only on one side, but almost
never isolated. Accordingly, we resort to the Constrained
Delaunay Triangulation (CDT) algorithm to complete D-
centerlines across gaps, after their piece-wise linear approx-
imation. At this stage, we obtain completion centerlines
(called C-centerlines) filled in by the CDT. Finally, we dis-
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card C-centerlines whose average road likelihood is below a
threshold.
• Generating multiple segmentations: Multiple segmenta-
tions allow to obtain accurate segmentations of objects with
thin structures, possibly the road segments [15]. Therefore,
we produce for an image three segmentations in an unsu-
pervised manner by using the mean-shift algorithm [24] by
varying both spatial and range bandwidth parameters.
• Collecting relevant cliques: For each segmentation, we
construct firstly road cliques such that the estimated D/C-
centerlines are their medial-axis. More precisely, we perform
morphological dilation on these centerlines with a disk. The
disk radius was adjusted to 5 so as the narrowest roads in the
tested images can be extracted. Then, we collect all super-
pixels of the segmented image, that overlap with the resulting
ribbons. These superpixels constitute the road cliques at fine
resolution. In order to correct the first stage’s miss-detection,
we add afterward all superpixels with sufficiently high road
likelihoods. Concerning background cliques, we construct
a binary mask such that a pixel is assigned 0 if it belongs
to a road superpixel and 1 otherwise. Thus, the background
cliques are the set of connected components in this binary
mask. Thereby, we obtain a new segmentation which consists
of both road superpixels and background cliques. Then, we
derive a coarser segmentation by merging all superpixels ex-
plained by the same centerline segment, corresponding also to
a CDT’s edge. Finally, we merge centerline segments, consti-
tuting a junction in the binary C/D-centerlines mask. Figure
2(b) shows samples of constructed higher-order cliques. It is
worth noting that due to such data-driven clique construction
different road configurations are considered such as straight
segments, blobs and various-type junctions.

3. EXPERIMENTAL RESULTS

Experiments were conducted on the urban aerial Vaihingen
database [25] composed of 14 color infrared images of size
500× 500 pixels and a ground resolution of 0.5 m: 4 images
were used for training and 10 for testing. The Vaihingen
road networks have irregular and complex structures. There
are many short and narrow roads, with cast shadows and
overhanging trees, making road extraction more challeng-
ing. The proposed approach is compared to 4 methods: the
baseline pairwise CRF (PCRF), the baseline Higher-Order
CRF (HOCRF) [15] defined on superpixels collected from
three segmentations (generated by the second stage) and the
two recent and competitive methods reported in [13, 14]. As
performance metrics, we employ the commonly used metrics
for evaluating road detection methods, namely correctness,
completeness and quality scores [26]. Ground truth cen-
terline pixels are considered true positives TP if they lie
within a buffer of width B around the estimated centerline,
and false negatives FN otherwise, so as a variant of recall
completeness = TP

TP+FN . On the other hand, estimated cen-

Fig. 3. Road networks extracted in 3 different aerial images.
True positives are displayed green, false positives blue, and
false negatives red.

terline pixels are TP if they lie within B pixels of the ground
truth centerline, and false positives (FP ) otherwise, thus
as a variant of precision correctness = TP

TP+FP . Finally,
both criteria are combined into a quality metric according to
quality = TP

TP+FP+FN . The buffer width is set to B = 5
pixels for all the considered methods, corresponding to the
narrowest roads we wish to extract. Qualitative and quantita-
tive results are reported respectively in Figure 3 and Table 1.

Table 1. Detection performance of road extraction methods.
All numbers are percentages.

Completeness Correctness Quality
PCRF 68.5 76 56.1

HOCRF 68.8 76.4 56.4
WEGNER [13] 69.4 75.0 55.6

MONTOYA [14] 88.4 81.1 73.3
OUR MODEL 86.7 74.3 67.8

It can be noted that both the PCRF and HOCRF methods,
despite they do not incorporate any prior about roads, have a
higher quality compared to [13] thanks to the unary classfier’s
efficiency. The performance of HOCRF is little better than
PCRF, due to the consistency prior over superpixels obtained
from multiple segmentation. Our model outperforms PCRF,
HCRF and [13] since we take into account the specific char-
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acteristics of roads and incorporate them as priors by means
of higher-order potentials. On the other hand, the recent
method [14] outperforms all the four methods by dint of a
more powerful unary classifier. In fact as reported in [14], the
proposed multi-scale, contextual unary classifier provides:
completeness=89.6, correctness=79.8 and quality=73.

4. CONCLUSION

In this paper, we have proposed an efficient higher-order CRF
model for road network extraction based on the robust PN -
Potts model. As future work, we plan to enhance the CRF’s
unary classifer by means of additional contextual features.
Moreover, we plan to extend our model to tackle a multi-label
classification problem with class-specific priors for other ob-
jects like buildings.
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[4] C. Ünsalan and B. Sirmaçek, “Road network detection us-
ing probabilistic and graph theoretical methods,” IEEE Trans.
GRS, vol. 50, no. 11, pp. 4441–4453, 2012.

[5] Z. Miao, W. Shi, H. Zhang, and X. Wang, “Road centerline ex-
traction from high-resolution imagery based on shape features
and multivariate adaptive regression splines,” IEEE GRSL,
vol. 10, no. 3, pp. 583–587, 2013.

[6] S. Hinz and A. Baumgartner, “Automatic extraction of urban
road networks from multi-view aerial imagery,” ISPRS P&RS,
vol. 58, no. 1-2, pp. 83–98, 2003.

[7] V. Mnih and G. E. E. Hinton, “Learning to detect roads in
high-resolution aerial images,” in ECCV, Crete, Greece, 2010,
pp. 210–223.

[8] S. Das, T. T. Mirnalinee, and K. Koshy Varghese, “Use of
salient features for the design of a multistage framework to
extract roads from high-resolution multispectral satellite im-
ages,” IEEE Trans. GRS, vol. 49, no. 10, pp. 3906–3931, 2011.

[9] C. Lacoste, X. Descombes, and J. Zerubia, “Point processes
for unsupervised line network extraction in remote sensing,”
IEEE Trans. PAMI, vol. 27, no. 10, pp. 1568–1579, 2005.

[10] F. Florent Lafarge, Gimel’farb G. L., and X. Descombes, “Ge-
ometric feature extraction by a multimarked point process,”
IEEE Trans. PAMI, vol. 32, no. 9, pp. 1597–1609, 2010.

[11] D. Chai, W. Förstner, and F. Lafarge, “Recovering line-
networks in images by junction-point processes,” in IEEE
CVPR, Portland, Oregon, 2013, pp. 1894–1901.
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