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ABSTRACT 

 

We propose a speaker emotional state classification method 

that employs inference-based Bayesian networks to learn 

posterior density of emotional speech sequentially. We aim 

to alleviate difficulty in detecting medium-term states where 

the required monitoring time is longer compared to short-

term emotional states that makes temporal content 

representation harder. Our inference algorithm takes 

advantage of the Sequential Monte Carlo (SMC) sampling 

and recursively approximates the Dirichlet Process Mixtures 

(DPM) model of the speaker state class density with unknown 

number of components. After learning the target posterior, 

classification of speaker states has been performed by a 

simple minimum distance classifier.  Test results obtained on 

two different datasets demonstrate the proposed method 

highly reduces the training data length while providing 

comparable accuracy compared to the existing state-of-the-

art techniques. 

 

Index Terms— Graphical models, emotion 

classification, Dirichlet Process Mixtures model, perceptual 

audio features, HCI. 

 

1. INTRODUCTION 
 

Emotional state classification is a challenging problem in the 

design of human-machine interactive systems. In this paper, 

the targeted problem is online speaker state classification 

from short term as well as medium term emotional speech 

data. Short term states include well known discrete emotions, 

i.e., happy, angry, sad, etc., transformed to arousal valance 

space. As the medium term state classification problem, we 

deal with sleepiness detection which constitutes a medium 

term quasi-emotional speaker state. Much of the difficulty in 

classification comes from the ambiguity of representative 

features. Also design of an online system to satisfy 

requirements of applications, i.e., driver sleepiness level 

monitoring, mood detection in interactive games, etc. is a 

challenging problem. To achieve an online speaker emotional 

state classification with high fidelity, it is necessary to 

involve in a sequential learning scheme which is capable of 

tracking the dynamic nature of emotional content through 

time. It is also required to employ features extracted by 

sequentially processing the speech.  

Conventional emotion detection systems make use of 

acoustic features which are originally proposed for speech 

recognition hence they may not fully model the speaker 

emotional states [1]. Consequently, a high performance 

detector could only be achieved by using very large feature 

sets (i.e., openEAR) [2] or considerably small feature sets in 

combination with highly complex classifiers [3,4]. 

Furthermore their supra-segmental feature extraction scheme 

prevents online labeling and reporting. Unlike the 

conventional methods that rely on the linguistics content of 

speech, we work with prosodic features extracted 

sequentially by psychoacoustic masking in spectral and 

temporal domain [5]. It is shown that we can capture 

discriminative features leading to significantly raised recall 

rates with a sparse dictionary learned by bag-of-words [6]. By 

using the same feature set, this work aims to employ 

inference-based Bayesian networks to learn mixture density 

of emotional speech sequentially. 

It is common to use mixture models in emotion 

recognition because of their efficiency in modeling diverse 

statistics of data. Using standard expectation maximization 

(EM) techniques, the HTK toolkit is employed to build 

mixture distributions where each emotion is modeled by its 

own GMM [7, 8]. Unlike the supra-segmental modeling of 

openEAR, HTK’s frame-level modeling is suitable to 

sequential learning. However specification of the number of 

mixture components that precisely represent the data is a vital 

problem in achieving high recall rates. Also GMMs have a 

serious shortcoming - they are statistically inefficient for 

modeling data that lie on or near a nonlinear manifold in the 

data space [9]. To overcome this problem, recently it has been 

demonstrated that deep neural networks (DNNs) can 

effectively generate discriminative features that approximate 

the complex nonlinear dependencies between features hence 

improve the emotion recognition performance [9]. In [10] 

Generalized Discriminant Analysis (GerDA) based on DNNs 

is proposed for learning low dimension discriminative 

features from a large set of acoustic features for emotion 

recognition. Currently, the biggest disadvantage of DNNs 

compared with GMMs is that it is much harder to make good 
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use of large cluster machines to train them on massive data 

sets. Better ways of parallelizing the fine-tuning of DNNs is 

still a major issue [9, 11]. In order to alleviate these problems, 

the Bayesian learning scheme proposed in this work utilizes 

a Dirichlet Process Mixture (DPM) model in order to estimate 

each emotional class density where the number of mixture 

components is unknown. Similar to DNNs we aim to 

overcome difficulties arise from EM while taking the 

advantages of employing mixture densities, but unlike the 

DNNs the introduced method uses a directed graphical model 

with small number of parameters. As of our knowledge this 

work is the first attempt for adopting the DPM models to 

emotion recognition problem. Recall rates reported on EMO-

DB [12] and Sleepy Language Corpus (SLC) [13] 

demonstrate that the proposed method provides comparable 

accuracy compared to the existing state-of-the-art techniques. 

 

2. PERCEPTUAL FEATURE SET 
 

The low level features used in speaker state detection are 

computed in the Bark scale as well as in Hz. The feature set 

is referred as perceptual because in order to model 

physiological and the perceptual effects of the human ear we 

apply the outer ear masking on spectrograms prior to feature 

extraction. An additional psychoacoustic masking is applied 

before the feature extraction in the Bark scale. Six out of nine 

of our features are computed in the Bark scale. Table 1 lists 

the features and gives a brief description of each where more 

explanation can be found in [6]. Section 3, 4 and 5 present 

details of the sequential target density estimation and model 

selection that constitute the main subject of this paper. 

 

3. DIRICHLET PROCESS MIXTURES  

 

This section gives the background on DPM. We define an 

explicit time index n and denote the observation sequence by �� = {��,�, … , ��,�}. Each observation ��,	  (� = 1, … , �) is 

initially assigned to a cluster where ��,	 ∈ {1, … , ��} is the 

corresponding cluster label, and �� ∈ {1, … , �} represents the 

number of existing clusters at time n. The vector of cluster 

variables is defined as �� = {��,�, … , ��,�} and corresponding 

cluster parameters are represented with the parameter vector �� = ���,�, … , ��,��. 

The DPM model assumes that the cluster parameters are 

independently drawn from the prior �(��) and the 

observations are independent of each other conditional on the 

assignment variable ��,	. Hence the DPM posterior density �(��) is, 

,
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where �� = {�� , ��}. The prior on clustering variable vector �� is formulated by (2) in a recursive way, 

����,	�� = ����,{�:	}� =  !"	�# ,   � = 1, … , �	#	�# ,   � = �	 + 1  (2) 

where �	 is the number of clusters in the assignment ��,{�:	}. 
In (2) %	 is the number of observations that ��,{�:	} assigns to 

cluster j and κ is a ’novelty’ parameter [14].  

 

4. PROPOSED MULTIVARIATE DENSITY MODEL  

 

In this section we introduce a multi-dimensional Gaussian 

mixture density model that we learn for each emotional state 

class. To achieve this we transformed the univariate density 

learning proposed in [15] to the multidimensional feature 

space. Furthermore we present our approach to multivariate 

conjugate prior selection for the emotional speaker state 

class. The model assumes that observations are drawn from a 

multivariate Gaussian distribution with unknown mean 

vector μ and covariance matrix Σ, θ = {μ,Σ}, where the 

number of mixtures are unknown. As given in Section 3, we 

deal with the conjugate DPM model that enables us to 

estimate the mixture parameters given the labeling vector �� 

and compute the proposal kernels [18] in closed form. Hence 

we utilize a Normal-inverse Wishart prior for the parameter 

vector θ = {μ, Σ} where, 

LOW LEVEL DESCRIPTORS CALCULATED IN HZ 

Average harmonics 

structure 

magnitude(AHSM) 

Average of the fundamental frequencies 

estimated from the log spectrum of the 

correlations of emotional differences. 

10dB perceptual 

bandwidth (BW1) 

The highest frequency component 

which exceeds the noise floor by at 

least 10 dB. 

5dB perceptual 

bandwidth (BW2) 

The highest frequency component 

which exceeds the noise floor by at 

least 5 dB. 
LOW LEVEL DESCRIPTORS CALCULATED IN BARK 

Average number of 

emotional blocks 

(ANSB) 

Expected number of emotional blocks 

within a time interval (i.e. 1sec in our 

work). 

Normalized 

emotional level 

difference (NSD) 

Average of the masked variations 

between the pitch patterns of the audio 

frame and the reference frame computed 

over the Bark scales. 

Normalized Spectral 

Envelope Difference 

(NSED1) 

Normalized envelope variations of the 

unsmeared pitch patterns within the 

successive frames for each critical band. 

NSED2 
Average of NSED1 over all critical 

bands 

NSED3 
The temporal average of NSED1 

through successive Y audio frames. 

Overall loudness of 

the frames (OLF) 

Sum across all critical bands of all outer 

ear weighted loudness values of an audio 

frame. 

Table 1. Features extracted for emotional speaker state modeling 
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 �(&, Σ) ≡ )*+(,-, .-, Λ-, 0-). (3) 

The joint pdf )*+(,-, .-, Λ-, 0-), can be factorized into 

product of the distributions of the covariance matrix, �(1), 

and the mean vector, �(&|Σ) as in (4). The covariance matrix 

is inverse Wishart distributed, Σ~*+(Λ-4�, 0-) where Λ-, 0- 

are the inverse scale matrix and degrees of freedom 

respectively, and conditioned on the covariance matrix, Σ, the 

mean vector, μ, is Normal distributed according to ~5(,-, Σ/w-).  

�(&, Σ) ∝ |Σ|9:;�<= >�� × 
exp C− 12 FG(Λ-Σ4�) − .-2 (& − ,-)HΣ4�(& − ,-)I 

(4) 

In our model the parameters of each component are 

denoted by ��,J = {&J , ΣK} for notational simplicity, where � ∈ {1, … , �} is the index to the number of components, and 

the overall parameter vector is L� = {��,�, … , ��,�M}. Each 

mixture component parameter LJ ,   � ∈ {1, … , ��} is 

distributed according to LJ~)*+(,-, .-, Λ-, 0-), where 

covariance matrix and mean vector are distributed according 

to, ΣK~*+(Λ-4�, 0-) and  &J~5(,-, Σ/w-), respectively. 

Conditional on assignment �� the joint posterior 

distribution of the j’th cluster parameter {&J , ΣK} can be 

represented by an inverse Wishart prior )*+(&J, ΣK|,J, .J, ΛJ , 0J), where the parameters are, 

ΛJ = Λ- + N�OJ,	 − OPJ��OJ,	 − OPJ�H�"

	Q� + .-�J.- + �J �OPJ − ,-��OPJ − ,-�H . 
.J = .- + �J ,    ,J = .-,- + �JOPJ.- + �J ,     SJ = S- + �J .  

(5) 

In (5) �J  is the number of observations in the j’th cluster, OJ,	 indexes each observation in the j’th cluster, and OPJ is the 

mean vector of these observations. The marginal of the 

posterior distributions representing the mean vector &J and 

the covariance matrix ΣK can be computed in closed form by 

the inverse Wishart and student-t distributions respectively, 

as shown below, 

��ΣK�T�, O�� = *+�ΛJ4�, 0J� 

��&J�T�, O�� = UV"4W�X C,J , ΛJ.J(0J − Y + 1)I 
(6) 

Accordingly if the parameters LJ , � ∈ {1, … , ��} are 

integrated out from (1) using the conjugacy property, the 

posterior probability �(T�|O�) of the assignment T� can be 

expressed up to a proportionality as follows, 

�(T�|O�) ∝ �(T�) Z Γ<�0J 2⁄ �Λ-V;/=]-</=
�J�"< =⁄ Γ<(0- 2⁄ ) ΛJV"/=]J</=

�M
JQ�  (7) 

Where �(T�) is the prior on clustering assignment vector T�, Γ< is the multidimensional Gamma function and d is the 

dimension of the observation space. 

The proposed model is capable of representing the 

multidimensional dependencies of emotional features with a 

reasonable complexity. This is achieved by defining the 

inverse Wishart distribution, which is the conjugate prior 

over the Gaussian likelihood function, as the prior over the 

mixture component parameters. This selection simplifies the 

sampling based inference scheme and reduces the variance of 

the SMC estimator. Moreover, unlike the conventional 

models that employs diagonal covariance matrices, the 

inverse Wishart distribution enables us to define a full 

covariance matrix that is much more appropriate to model 

correlations of features that yields precise learning of the 

number of components encountered in a particular emotional 

speaker state. 

 

5. DENSITY ESTIMATION BY ANNEALED SMC 

SAMPLERS 

 

In a sequential problem the posterior distribution changes 

over time and new modes of the posterior distribution may 

emerge as new observations are received. The algorithm must 

have a good mixing property to explore the modes of the time 

evolving posterior distribution and to achieve a good 

approximation to the true target posterior. The conventional 

approach applies Gibbs moves to each particle in order to 

obtain weighted samples from a sequence of target 

distributions denoted as ��(T�), … , ��(T�). However, the 

Gibbs sampler may fail to represent the modes of the true 

target posterior due to the slow convergence property of the 

Gibbs samplers. This is particularly observable when the 

posterior distribution has a multi modal form where the 

modes are isolated [16]. To deal with this problem, we 

employ an annealing scheme to improve the efficiency of 

posterior estimation [15]. The annealing scheme is adopted to 

importance sampling to construct the proposal distribution 

suitable to sampling of the true target distribution [15,16]. 

To achieve our goal the annealed target posterior is 

defined as ��(T�) = ��(T�|] = ^�) and as each new 

observation arrives the annealing is achieved by updating the 

novelty parameter of the underlying Dirichlet process which 

is set to ^�  according to a geometric spacing function ^� =^�4� + _`(] − ^�4�) where ^� > 0,  ^� > ^�4� and _` is 

the common parameter that determines the amount of spacing 

at each time step. Note that ^� is a parameter of the prior 

distribution of number of components where a higher value 

yields higher number of mixtures. The annealed distributions 

can be interpreted as an underlying DPM model of which the 

parameters are relaxed in order to obtain a tractable annealed 

posterior which is easy to sample. 

We employ particle filtering as inference tool hence the 

annealed DPM target posterior density �(c�) shown in (1) 

can be approximated at time n − 1 with a set of weighted 
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particle �+�4�	 , d�:�4�	 �	Q�ef 
. At time n the path of each particle 

can be extended using a Markov kernel, g�(c�4�, c�) and the 

unnormalized importance weights hi�(c�:�)/j�(c�:�), 

associated with the extended particles are calculated 

according to .�(��:�) = .�4�(��:�4�)0�4�(��4�, ��) where 

the incremental term of weight equation, 0�4�(��4�, ��) is,  

0�4�(��4�, ��) = h�(c�)k�4�(c�, c�4�)h�4�(c�4�)g�(c�4�, c�)  . (8) 

The design of efficient sampling schema hinges on 

properly choosing the backward kernel k�4�. Assuming g� is 

an Monte Carlo Markov Chain (MCMC) kernel of invariant 

distribution ��, an approximate backward kernel can be 

formulated as in [16] that yields to a good approximation for ��4� ≈ �� with the incremental weight, 0�4�(��4�, ��) =h�(��4�)/h�4�(��4�). 

 

6. TEST RESULTS 
 

In order to evaluate performance of the proposed method 

(DPM-P) we performed classification by the learned 

emotional class density functions and compared the achieved 

speaker state recognition rates with existing methods. For all 

test cases the number of particles is set to 100.  

First we have used EMO-DB database to evaluate the 

short term emotional speaker state recognition capability. The 

six emotion classes included in EMO-DB are unemotional, 

disgusting, bored, angry, happy and fear. For benchmarking, 

we report the accuracy in continuous arousal-valance space 

by using the transformed classes provided in [8]. Table 2 

reports the unweighted (UA) recall rates for Arousal, Valance 

and All categories as it is reported in [8] as benchmarking 

results. Recall rates, except the proposed DPM-P method and 

GMM-P (GMM classification by using our features), are 

copied from the related literature and references are given in 

the parenthesis. Particularly, SVM (openEAR) denote the 

unweighted recall rates achieved by openEAR features and 

are reported in [8]. SVM-P refers to our previous work that 

we have performed classification by using libSVM tool of 

WEKA. GMM/HMM (HTK) refer the recognition rates 

achieved by HTK as reported in [8]. GerDA denote the 

speaker state recognition rates obtained by the Generalized 

Discriminant Analysis based on DNNs [10]. All of the 

reported recall rates except DPM-P show the accuracy 

computed offline manner. Because all of the methods except 

DPM-P apply offline classification. Some (i.e., openEAR) 

apply supra-segmental feature extraction, some others (i.e., 

HTK) perform frame based feature extraction but apply 

chunk based or segmental classification. However 

unweighted recall rates listed for DPM-P illustrate that 

recognition rates reported over each test sample (for each 

sequentially processed 9-D feature vector) without any post 

processing or utterance based filtering. It can be concluded 

that the short time speaker state classification accuracy of the 

proposed online classification scheme is comparable to the 

existing methods. And also from the accuracy of GMM-P, 

SVM-P and DPM-P cases, it can be concluded that the 

representation capability of our perceptual features 

outperforms the conventional features. 

Secondly the medium term speaker emotional state 

classification accuracy of DPM-P has been tested on SLC 

corpus [17] used in the Speaker State Challenge [17] to 

compare our performance with the existing systems. SLC 

ground truth is provided at 10 sleepiness levels on Karolinska 

Sleepiness Scales (KSS) where a level exceeding 7.5 is 

labeled as sleepy [17]. Since the SLC speech content is 

scattered to various KSS levels it is difficult to model the 

detection as a two-class classification problem, i.e., sleepy 

(SL) and non-sleepy (NSL). The SLC data includes 9089 

utterances, which features 21 hours of speech recordings of 

99 subjects. The sampling rate of speech is down-sampled to 

16 kHz. According to the data used for training and test 

stages, test scenarios are named as Train vs Develop and 

Train+Develop vs Test as in [17]. Number of utterances used 

for the training and test are respectively 3366 and 2915 for 

Train vs Develop. For Train+Develop vs Test, we use 6281 

and 2808 utterances, respectively. Note that we used exactly 

the same test data to compare performances of different 

methods (Table 3).The only difference is the sequential 

training procedure in DPM-P case. Therefore we have also 

reported the speaker emotional state classification accuracy 

for smaller training sets. This is achieved classification of the 

same test data by employing the target mixture density 

estimated at different training instants (Table 4). Note that the 

longer training data is obtained by extending the previous 

short data with sequentially included new observations.  

Table 3 reports the sleepiness detection performance 

obtained by the proposed method DPM-P compared to the 

existing ones. Columns mmno and mmeno respectively denote 

the unweighted recall rates for sleepy (SL) and nonsleepy 

(NSL) speaker states. Avg corresponds to the arithmetic mean 

of mmno and mmeno. Rates achieved offline by the SVM with 

the same 9 features are reported as SVM-P [6] (we used Weka 

libSVM toolbox with RBF kernel, C:2). IS2011 Win refers 

 Arousal Valance All 

DPM-P 83.5 82.8 81.7 

GerDA [10] 97.6 82.2 79.1 

GMM-P 92.1 91.9 92.5 

HMM/GMM (HTK) [8] 91.5 78.0 73.2 

SVM-P [6] 95.2 94.3 86.3 

SVM (openEAR) [8] 96.8 87.0 84.6 

Table 2.  Comparison of unweighted recall rates with existing 

work on EMO-DB 

 Train vs Develop Train+Dev vs Test 

 RRSL RRNSL Avg RRSL RRNSL Avg 

DPM-P 74.2 64.0 69.1 89.3 71.6 80.5 

SVM-P [6] 89.1 97.2 93.2 79.9 80.1 80.0 

IS2011 Win [3] 60.3 75.7 68.0 64.2 79.1 71.6 

IS2011[17] NA NA 67.3 NA NA 70.3 

Table 3. Comparison with existing work on SLC 
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the highest scores reported by the Interspeech 2011 Speaker 

States Challenge participants where the features of openEAR 

are used [3]. IS2011 SSC denote the highest baseline 

performance declared in [17] and the results are obtained by 

the openEAR features. It can be seen from Table 3 that 

classification accuracy of the proposed sequential method 

(DPM-P) in first case is lower than the SVM-P and 

comparable to the IS2011 Winner and IS2011 SSC. However 

in the second case DPM-P is comparable to SVM-P and 

clearly outperforms others. Since other methods perform 

offline supra-segmental feature extraction, it can be 

concluded that the introduced method DPM-P is promising 

for online applications.  

In order to evaluate learning capability and speed of 

DPM-P, we also reported the speaker state labeling accuracy 

at different stages of training. Table 4 reports the performance 

at various training lengths. As can be seen from the table, 

performance tends to increase with the training time up to a 

level. But after a certain time performance of the system 

begins to drop because of overfitting. So rather than using full 

training data, DPM-P results reported at Table 3 are provided 

for 10k training observations which corresponds to 189.77 

minutes of training. This is where the system performance has 

its peak on Train vs Develop case according to Table 4. pk −�� and )pk − �� are the observed number of mixture 

components learned by DPM-P at each training phase. Note 

that required training time is significantly less than a deep 

neural network based method but is still long enough for a 

fully online scheme. Currently we are working on to speed up 

the convergence by improving DPM-P resampling scheme. 

However, it should be noted that, even dramatically lower 

training durations such as 1.9 or 18.98 mins are used, 

performance of the DPM-P is still comparable with other 

methods. So it is possible to increase training speed as needed 

without serious performance loss. 

 

7. CONCLUSIONS 

 

We introduce an emotional speaker state classification 

framework that model the emotional speech with a mixture 

density. Reported performance is comparable to the state-of-

the art methods that use deep neural networks, however 

choosing sensible values for hyper-parameters such as the 

learning rate schedule, the strength of the regularizer, the 

number of layers and the number of units per layer requires 

considerable skill and experience and is a major limitation of 

DNNs. The proposed DPM model with SMC samplers 

constitute a promising alternative to existing methods since it 

can be easily adopted to online applications that require 

sequential processing. 
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Training length 

(minute) 
SL-kn NSL-kn RRSL RRNSL Avg 

  Train+Dev vs Test 

1.9 6.5 10.2 82.9 60.3 71.6 

18.98 15.0 17.0 95.0 64.0 79.5 

75.91 16.0 17.0 95.4 65.7 80.6 

189.77 22.0 21.0 89.3 71.6 80.4 

Full: 872.18 23.0 21.0 77.3 79.1 78.2 

  Train vs Develop 

1.9 7.0 11.0 67.3 61.4 64.4 

18.98 15.1 16.3 68.2 61.3 64.7 

75.91 18.0 18.0 66.4 63.5 65.0 

189.77 24.0 21.0 74.2 64.0 69.1 

Full: 453.55 24.0 21.0 63.1 73.0 68.0 

Table 4. Recall rates vs training time for DPM-P method 

23rd European Signal Processing Conference (EUSIPCO)

124


