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ABSTRACT

In this paper, an approach to sound field reproduction in re-

verberant rooms is presented. We focus on box-shaped rooms

with fully reflective (rigid) walls. We propose a scheme based

on mode-matching in the spatio-temporal Fourier domain

combined with a simple least-squares approach to derive

the loudspeaker weights that render the target sound-field.

By taking advantage of the fast Fourier transform (FFT),

the method leads to a fast way to compute the loudspeaker

weights. We address the reconstruction of basic sound fields

(room-modes) using linear loudspeaker array configurations.

This is important, as more complex sound fields can be

decomposed into a set of weighted room-modes. Our sim-

ulations show that accurate and efficient reconstruction of

room-modes in a reverberant environment with perfectly

reflective walls is possible.

Index Terms— sound field synthesis, Fourier domain,

mode-matching, box-shaped room, room-modes.

1. INTRODUCTION

The main application of sound field reproduction is to recre-

ate sound fields using an array of loudspeakers to give the im-

pression to the listeners of a predefined acoustic scene. The

problem is to find the loudspeaker driving functions such that

their emitted sound fields combine to approximate the desired

sound field. Approaches to achieve this are traced back to the

late 1980’s with a method by Berkhout called “Wave Field

Synthesis” (WFS) [1], and later methods called “Higher Or-

der Ambisonics” (HOA) (e.g., [2]). In [3], a comprehensive

treatise on analytic methods for sound field reproduction is

given. These methods are normally derived assuming a free-

field setup. In a room this assumption is invalid.

In a reverberant environment, the derivation of the loud-

speaker weights and accurate reconstruction of the desired

sound field poses a challenging problem. One general ap-

proach to derive the loudspeaker weights in a reverberant en-

vironment consists of a sound-pressure-matching approach

based on the inversion or equalization of the room transfer

function from each of the loudspeaker positions to a dense

set of points in the listening area. This easily leads to ill-

conditioned solutions given the non-minimum-phase proper-

ties of the room transfer function, and to fast divergence from

the desired solution in uncontrolled zones [4]. One of the

first methods to achieve sound field synthesis in a controlled

reverberant environment is given in [5]. More recent papers

combine models of wave-propagation with feedback obtained

by placing microphones in the desired reconstruction zone to

correct for any discrepancies between the reconstructed and

desired sound field [6]. Generally, the complexity of these

methods increases drastically with the target temporal fre-

quency. More importantly, the synthesis of room-modes – the

basis functions into which any sound field in a room can be

decomposed – has not been widely treated in the literature [3].

In this paper we address the reproduction of virtual sound

fields in a room using an array of loudspeakers. We use the

model introduced in [7] where reverberation is characterized

by discretization in the spatio-temporal Fourier domain. We

then apply mode-matching in the discrete Fourier domain to

derive the loudspeaker weights and combine the obtained an-

alytic solution with a simple least-squares approach. For sim-

plicity of presentation, 2D (height invariant) sound fields are

considered. In Sec. 2, we first give a brief introduction to

the reverberation model in [7] as it is used in this work. We

then use a similar approach as in [8]: Given a desired virtual

sound field, the aperture function (i.e. the driving function of

a continuous loudspeaker) that would render this sound field

is calculated. In Sec. 3, the continuous aperture function is

sampled in space, which has the interpretation of replacing

the continuous loudspeaker with an array of point-sources.

Given an array of loudspeakers arranged in a given geometry

we derive the least-squares approximation that best fits the an-

alytic sampled aperture. The computation of the loudspeaker

weights is performed efficiently using the fast Fourier trans-

form (FFT). Simulation results are given in Sec. 4.

2. SOUND FIELD REPRODUCTION IN

BOX-SHAPED ROOMS

The domain of interest is a box-shaped room with dimensions

Lx, Ly and Lz , where one corner of the room is positioned

at the origin of the coordinate system and the room walls are

arranged perpendicular to each of the coordinates. The room

walls are assumed to be rigid (i.e., fully reflective). The anal-

ysis is given for 2D height-invariant sound fields, that is, the

sound field in the z direction is assumed constant. A 2D point-

source is therefore seen as a line-source extending in the z
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Fig. 1: A source (black circle) in a room. The room space is

enclosed by a bold line. Sound reflections are simulated as

virtual copies (gray circles) of the source.

direction from 0 to Lz . Fixing the z coordinate to any height

z0, a position in space is represented by x=[x, y]T, were su-

perscript T indicates vector or matrix transposition. Likewise,

a source position is given by xs = [xs, ys]
T.

Reverberation in the room is modeled by the creation of

free-field virtual image sources outside the room represent-

ing the reflections due to the walls, an approach known as

the mirror image source model (MISM) [9]. In the case of

a box-shaped room with fully reflective walls, any sound

field can be modeled as spatially periodic over a lattice

when extended outside the boundaries of the room [7]. Let

the periodicity lattice be given by Λ, with generator matrix

Λ = diag(2Lx, 2Ly) [7]. Note that the period is given by

VΛ(0), the Voronoi region at the origin of lattice Λ defined

as VΛ(0) =
{

x ∈ R
3 : ‖x‖ ≤ ‖x−Λn‖, ∀n ∈ Z

3
}

. In this

case VΛ(0) = (−Lx, Lx) " (−Ly, Ly), where " denotes the

Cartesian product. Moreover, inside VΛ(0), the sound field is

mathematically modeled as spatially symmetric. Therefore,

if P (x, ω) denotes the steady-state sound field in a room then

for xs ∈ VΛ(0)

P (x, ω)=P (−x, ω)=P (−x, y, ω)=P (x,−y, ω), (1)

where ω denotes temporal frequency.

A depiction of the scenario is given in Fig. 1. The actual

room is indicated by a solid bold line, whereas the Voronoi

region is the area enclosed by a solid line. A sound field in-

side the room is generated by a source S0. The reflections

of the sound field on the walls are modeled by virtual copies

of the real source (depicted by gray filled circles). The vir-

tual sources denoted by S1 and S2 correspond to first order

reflections, and S3 corresponds to a second order reflection.

Higher order reflections on the walls are modeled by periodic

repetitions of the set of sources inside the Voronoi region.

Let us now denote the desired (virtual) sound field that

is to be reproduced in the room by P (d)(x, ω). Because of

spatial periodicity, the desired sound field can be expanded

into a spatial Fourier series as follows,

P (d)(x, ω) =
1

|Λ|

∑

q∈Z2

P̂
(d)
VΛ

(Φq, ω)ejq
TΦTx, (2)

where q = [qx, qy]
T is an integer vector, |Λ| is the absolute

value of the determinant of Λ, Φ is the generator matrix

Φ = 2πΛ−T of the (scaled) reciprocal lattice Φ that defines

the spectral sampling points. The superscript −T denotes the

inverse transposed. The Fourier coefficients P̂
(d)
VΛ

(Φq, ω),
are samples of the continuous spatio-temporal spectrum

P̂
(d)
VΛ

(φ, ω) [7]. Function P̂
(d)
VΛ

(φ, ω) is the spatial Fourier

transform of P (d)
VΛ

(x, ω), which denotes the desired sound

field generated in free-field by the sources in the Voronoi

region, and φ=[φx, φy ]
T is the spatial frequency vector.

The actual sound field in the room (indicated by an (a) su-

perscript) generated by a continuous source emitting a signal

s(xs, ω), is completely characterized by the Green’s function

G(x,xs, ω) from the source position to any point in the room,

P (a)(x, ω) =

∫

VΛ(0)

s(xs, ω)G(x,xs, ω)dxs. (3)

Further any valid source function s(xs, ω) has to fulfill the

symmetry conditions (1). Therefore, although the integral is

evaluated over the entire Voronoi region, the source function

only has degrees of freedom inside the room. This function

can be seen as the aperture function of a continuous loud-

speaker inside the room that gets reflected on the other three

zones of the Voronoi region (see Fig. 1). Thus, for xs ∈
VΛ(0) we have s(xs, ω) = s(−xs, ω) = s(−xs, ys, ω) =
s(xs,−ys, ω).

Given the model presented in [7], the Green’s function of

the room can be obtained using a sampling scheme on the

spatio-temporal Fourier transform of the free-field room im-

pulse response (RIR). In our 2D scenario it takes the form

Ĝff(φ,xs, ω)=e−jφTxs(2π(‖φ‖2 − (ω/c)2))−1 [10], where

c denotes the velocity of sound propagation. The Green’s

function of the room can be expanded as a spatial Fourier se-

ries using spectral samples of free-field Green’s function,

G(x,xs, ω) =
1

|Λ|

∑

q∈Z2

Ĝff(Φq,xs, ω)e
jqTΦTx. (4)

On the other hand, the source aperture function s(xs, ω) is

periodic in space, we can then expand it as a Fourier series

s(xs, ω) =
1

|Λ|

∑

q∈Z2

βq(ω)e
jqTΦTxs , (5)

with βq(ω), the spatial coefficient functions of the aperture.

To derive the unknown aperture coefficients βq(ω) from

the known coefficients of the desired sound field P̂
(d)
VΛ

(Φq, ω)
in (2), we substitute the series expansions for the RIR (4) and

the source (5) into the actual sound field expression (3) i.e.,

P (a)(x, ω)=

∫

VΛ(0)

s(xs, ω)G(x,xs, ω)dxs

=
1

2π|Λ|2

∑

q′∈Z2

∑

q∈Z2

βq′(ω)
ejq

TΦTx

‖Φq‖2 − (ω/c)2

×

∫

VΛ(0)

ejq
′TΦTxse−jqTΦTxsdxs. (6)
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The integral in (6) is equal to |Λ| if q′ = q and 0 otherwise.

Then we obtain

P (a)(x, ω) =
1

|Λ|

∑

q∈Z2

βq(ω)e
jqTΦTx

2π (‖Φq‖2 − (ω/c)2)
. (7)

Equating (2) and (7) term by term we get the aperture coeffi-

cients in terms of the desired sound field coefficients, i.e.,

βq(ω)

2π(‖Φq‖2 − (ω/c)2)
= P̂

(d)
VΛ

(Φq, ω)

⇒ βq(ω) = 2πP̂
(d)
VΛ

(Φq, ω)
(

‖Φq‖2 − (ω/c)2
)

. (8)

Substituting (8) into (5), the aperture function is given by

Fourier synthesis of the obtained coefficients,

s(xs, ω)=
2π

|Λ|

∑

q∈Z2

P̂
(d)
VΛ

(Φq, ω)
(

‖Φq‖2−(
ω

c
)2
)

ejq
TΦTxs .

(9)

This equation defines the signal that a (continuous) loud-

speaker in the room must output in order to generate the

desired sound field. Note that the source function s(xs, ω)
can take values at any point in the space of the room. This is

undesirable as we want to place loudspeakers only at conve-

nient locations.

Of interest is, for example, a continuous aperture function

defined on a linear spatial manifold. Let a continuous linear

loudspeaker be positioned parallel to the y direction at a fixed

x0. In this case the aperture function of the linear loudspeaker,

say s̄(xs, ω), inside the room (for xs ∈ (0, Lx) " (0, Ly))
takes the form, s̄(xs, ω)= s̄(xs, ys, ω) = δ(xs − x0)s̄(ys, ω)
where δ is Dirac’s delta function. The source function in the

Voronoi region is thus given by two linear loudspeaker distri-

butions extending in the y direction from y=−Ly up to Ly,

positioned at x0 and −x0 respectively. Then for xs ∈ VΛ(0)
we have, s̄(xs, ω) =

(

δ(xs − x0) + δ(xs + x0)
)

s̄(ys, ω), or

from (5) in the spatio-temporal Fourier domain

β̄q(ω) = 2 cos(qx(π/Lx)x0)β̄
(y)
qy

(ω), (10)

since Φ= diag(π/Lx, π/Ly), where β̄
(y)
qy (ω) are the spatial

Fourier coefficients in the y dimension. Our interest is then

to compute the coefficients β̄q(ω) of the linear source that

“best” approximate the coefficients βq(ω) of the loudspeaker

function that can take values anywhere in the room. We can

pose the approximation problem at this point. It is however

advantageous to first analyze the effect of spatial sampling on

these continuous loudspeaker functions (interpreted as plac-

ing loudspeakers at those sample positions in space). We

come back to the approximation problem afterwards.

3. COMPUTATION OF THE LOUDSPEAKER

WEIGHTS

To deploy a continuous loudspeaker is in general unpracti-

cal. We can instead approximate the aperture function of this

continuous loudspeaker using an array of point-loudspeakers.

To this purpose, we first low-pass and sample the continuous

aperture function s(xs, ω) that can take values anywhere in

the room. The gain of a linear loudspeaker array is then calcu-

lated by computing the least-squares approximation between

the sampled aperture function and the (sampled) constrained

function for the linear spatial manifold (10).

The sampling of s(xs, ω) induces a periodic extension on

the set of Fourier coefficients βq(ω). Let Γ denote the sam-

pling lattice that defines the spatial samples of the aperture

function s(xs, ω) and assume Λ ⊆ Γ. Further let Σ be a sub-

lattice of the spatial-frequency sampling lattice Φ i.e., Σ ⊆ Φ,

denoting the spatial-frequency periodicity lattice. The gener-

ator matrices are then related as Γ=2πΣ−T. The samples of

the aperture function are thus approximated by [7]

s(Γn, ω) ≈ slp(Γn, ω) =
1

N(Λ/Γ)|Γ|

∑

q∈N

βq(ω)e
jqTΦTΓn,

(11)

where n = [nx, ny]
T is an integer vector, Γn ∈ VΛ(0), and

N(Λ/Γ) denotes the number of lattice points of Γ that lie in-

side VΛ(0). The summation is now restricted to that set of lat-

tice points: N ={q :Φq∈VΣ(0)}. It follows that slp(Γn, ω)
represents the samples of a spatially low-passed approxima-

tion of the aperture function s(Γn, ω). Clearly, the larger

we make N the less low-passed this approximation will be.

Moreover, note that the summation on the right hand side of

(11) defines a 2D inverse DFT (IDFT).

As mentioned before, the spatial sampling lattice Γ is the

reciprocal of the spatial-frequency periodicity lattice Σ, the

generator matrices are related as Γ = 2πΣ−T. On the other

hand, lattice Σ is a sub-lattice of the spatial-frequency sam-

pling lattice Φ. The generator matrices are therefore related

as Σ = ΦN, where N is a full-rank integer matrix. Using

these relationships the argument of the exponential function

in (11) is given by, qTΦTΓn=2πqTN−Tn. The IDFT (11)

can therefore be rewritten as,

slp(Γn, ω) =
1

|N||Γ|

∑

q∈N

βq(ω)e
j2πqTN−Tn. (12)

One can verify that |N| = N(Λ/Γ) = N(Σ/Φ). In order to

express this IDFT in matrix form, let us introduce the multi-

dimensional DFT matrix of size |N| × |N|, FN with entries

given by, [FN]l,m = e−j2πnT

l N
−1qm , for n ∈ VNT(0) and

q ∈ VN(0), where l and m denote an ordering of the vectors

n ∈ VNT(0) and q ∈ VN(0) respectively. Matrix FN is uni-

tary satisfying (FN)HFN= |N|I and (FN)−1=(FN)H/|N|.
For simplicity, let us make N = diag(Nx, Ny). This means

that Σ=ΦN is diagonal (since Φ is diagonal in this work),

and implies a rectangular packing of the spatial-frequency

space. Using this notation, (12) is rewritten as

s(ω) =
(FN)Hβ(ω)

|N||Γ|
=

(FNx
⊗ FNy

)Hβ(ω)

(NxNy)|Γ|
, (13)
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Fig. 2: Configurations considered in the experiments.

where ⊗ is the Kronecker product, β(ω) and s(ω) are |N|×1
vectors with elements ordered as qm and nl respectively. The

lp subscript indicating a spatially low-passed sound field has

been dropped for readability.

Let us come back to the approximation problem in the

example given at the end of the previous section. The vec-

tor of spatial Fourier coefficients defining the continuous lin-

ear loudspeaker is constructed as β̄(ω)= β̄
(x)
(ω) ⊗ β̄

(y)
(ω),

where β̄
(x)

(ω) is a Nx × 1 vector of fixed values taken from

(10), and β̄
(y)

(ω) is a Ny × 1 vector of unknown values to be

computed. From (13), we now pose the minimization prob-

lem that leads to the least-squares approximation of the linear

loudspeaker array that renders the desired sound field. Make

B = β̄
(x)

(ω) ⊗ INy
, with INy

the identity matrix of size

Ny ×Ny. Then β̄(ω)=Bβ̄
(y)

(ω) and the problem is

min
β̄

(y)
‖Bβ̄

(y)
(ω)− β(ω)‖2. (14)

The optimal y-direction Fourier coefficients are then given by

β̄
(y)

(ω)=B+β(ω), where B+ is the pseudo-inverse of B.

The loudspeaker weights that render the target sound field

are computed by (12) or (13) using the calculated weights in

(14). The computation of the weights is upper bounded by

a complexity order O(N3) (assuming N = Nx ≈ Ny), but

in many cases the structure in B might be exploited to per-

form the least-squares approximation more efficiently. The

synthesis in (12) is performed using a IFFT with complexity

order O(N2 logN). This constitutes an efficient algorithm

for sound field reproduction in box-shaped rooms.

4. SIMULATION RESULTS

We set as target sound-fields a set of steady-state room-modes

at different temporal (and spatial) frequencies. We consider

the ideal case of omnidirectional loudspeakers with flat fre-

quency responses. We set one linear array covering the whole

room space and for comparison, the case of a truncated linear

array. The room dimensions are 3.81m in the x-direction and

2.84m in the y-direction.

We first address the case when the array fully covers the

room length. The scenario is given in Fig. 2(a), The positions

of the loudspeakers are depicted by little (blue) circles. The

line runs parallel to the y-direction at x = 0.81m. The lin-

ear array consists of 92 loudspeakers covering the full room
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(f) Reconstructed sound field

Fig. 3: Reconstruction of different room-modes using the full

linear array.

length. The target sound field is given by a room-mode at tem-

poral frequency f =630Hz and spatial frequencies fx=1.85
cycles per meter and fy=0 cycles per meter. The target sound

field is thus given by a standing-wave with constant amplitude

in the y-direction, which is depicted in Fig. 3(a). The sound-

field synthesized by the calculated loudspeaker weights in

(12) is depicted in 3(b). Since the room-mode displays sur-

faces of constant amplitude parallel to the loudspeaker array,

it is perhaps not surprising that such a good reconstruction

can be achieved.

To contrast, let us now try and reconstruct a target sound

field with surfaces of constant amplitude perpendicular to the

loudspeaker array. The target is a room-mode with frequen-

cies f =850Hz, fx=0 cycles/m and fy =2.5 cycles/m. The

target sound field is depicted in Fig. 3(c). The reconstructed

sound field is given in Fig. 3(d).

It is clear that the linear array cannot reproduce this

room-mode accurately in the whole room. This provides

insight into the problem; to reconstruct a sound field com-

posed of ill-reconstructed room-modes, one could compute

another set of loudspeaker weights to better reconstruct the
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Fig. 4: Reconstruction of a room-mode using the truncated

linear array.

sound field in a smaller zone, or properly weigh or discard

those ill-reconstructed room-modes. Additionally, one could

increase the degrees of freedom in the x-direction by placing

more loudspeakers, for example, in a perpendicular line to

form an “L”-shaped array.

As a third experiment, we set the target sound-field to

a more general room-mode with frequencies f = 850Hz,

fx = 1.85 cycles/m and fy = 2.5 cycles/m. The target is

depicted in Fig. 3(c) and the reconstructed sound field is

depicted in Fig. 3(f). The linear array can reconstruct this

particular room-mode fairly accurately. Why this room-mode

can be better reconstructed than the one in Fig. 3(d) has still

to be analyzed. A guess would be by a more beneficial in-

terference pattern of direct and reflected wavefronts. It is

also physically hard for this linear loudspeaker array to sus-

tain perpendicular planes of constant amplitude as distance

increases.

For comparison, we also consider the reconstruction accu-

racy of the truncated linear array depicted in Fig. 2(b). In this

case, only 21 loudspeakers are used covering a length from

y = 1m to y = 1.80m. Truncation is characterized in space

by a multiplication of the source function with a rectangu-

lar window. This translates into a (complex-valued) convolu-

tion in the spatial Fourier domain. From Fig. 3(d), it is seen

that truncation has a clear impact in the performance. This

is not surprising, since we are using the solution to the least-

squares approximation for the full linear array. Naturally, it

is also possible to solve the least squares problem including

this windowing effect. The effect of the convolution in the

spatial Fourier domain is, however, an important topic to be

explored.

5. CONCLUSIONS

A new approach to sound field reproduction in box-shaped

rooms is presented. We cover the efficient synthesis of room-

modes using an array of loudspeakers, a topic not yet widely

covered in the literature [3]. We have proposed an analytic

method to model and match the room-modes in the spatio-

temporal Fourier domain. We provided an example setup

using a linear array parallel to one of the room walls, but

the algorithm can be readily applied to other array geome-

tries. The method gives insight into the problem since vanish-

ing modes (components that cannot be inverted or equalized),

can be identified and a strategy to handle them can be drawn

accordingly. Our simulation results show that reproducible

room-modes can be accurately and efficiently synthesized.

The theory and application given in this work is restricted to

box-shaped rooms with fully reflective walls. An extension

to include wall absorption and arbitrary room geometries is a

topic of current research.

REFERENCES

[1] A. J. Berkhout, D. de Vries, J. Baan, and B. W. van den

Oetelaar, “A wave field extrapolation approach to

acoustical modeling in enclosed spaces.,” J. Acoust.

Soc. Am., vol. 105, no. 3, pp. 1725–1733, Mar. 1999.

[2] J. Ahrens and S. Spors, “Analytical driving functions

for higher order ambisonics,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process. (ICASSP), Mar. - Apr.

2008, pp. 373 –376.

[3] J. Ahrens, Analytic Methods of Sound Field Synthe-

sis, T-Labs Series in Telecommunication Services.

Springer, Berlin, Jan. 2012.

[4] P. A. Nelson, F. Orduna-Bustamante, and H. Hamada,

“Inverse filter design and equalization zones in mul-

tichannel sound reproduction,” IEEE Trans. Audio,

Speech, Lang. Process., vol. 3, no. 1, pp. 185 –192, Jan.

1995.

[5] T. Betlehem and T. D. Abhayapala, “Theory and design

of sound field reproduction in reverberant rooms,” J.

Acoust. Soc. Am., vol. 117, no. 4, pp. 2100–2111, Apr.

2005.

[6] W. Jin and W. B. Kleijn, “Multizone soundfield repro-

duction in reverberant rooms using compressed sensing

techniques,” in Proc. IEEE Int. Conf. Acoust., Speech,

Signal Process. (ICASSP), May 2014, vol. 5, pp. 4728

– 4732.

[7] J. Martinez and R. Heusdens, “On low-complexity sim-

ulation of multichannel room impulse responses,” IEEE

Signal Process. Lett., vol. 17, no. 7, pp. 667 –670, July

2010.

[8] Y. J. Wu and T. D. Abhayapala, “Theory and design of

soundfield reproduction using continuous loudspeaker

concept,” IEEE Trans. Audio, Speech, Lang. Process.,

vol. 17, no. 1, pp. 107 –116, jan. 2009.

[9] J. B. Allen and D. A. Berkley, “Image method for ef-

ficiently simulating small room acoustics,” J. Acoust.

Soc. Am., vol. 65, no. 4, pp. 943–950, Apr. 1979.

[10] T. Ajdler, L. Sbaiz, and M. Vetterli, “The plenacoustic

function and its sampling.,” IEEE Trans. Signal Pro-

cess., vol. 54, no. 10, pp. 3790–3804, Oct. 2006.

23rd European Signal Processing Conference (EUSIPCO)

2520


