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ABSTRACT
Having an accurate statistical model of room impulse re-
sponses with a minimum number of parameters is of crucial
importance in applications such as dereverberation. In this
paper, by taking into account the behaviour of the early reflec-
tions, we extend the widely-used statistical model proposed
by Polack. The squared room impulse response is modelled in
each frequency band as the realisation of a stochastic process
weighted by the sum of two exponential decays. Room-
independent values for the new parameters involved are ob-
tained through analysis of several room impulse response
databases, and validation of the model in the likelihood sense
is performed.

Index Terms— Statistical model, Impulse Response,
Early Decay

1. INTRODUCTION

The issue of reverberation is important as it degrades the intel-
ligibility of speech in everyday communication scenarios [1],
creating the need for effective means of controlling and re-
moving it [2]. Statistical modelling of the measured Room
Impulse Response (RIR) is used in many research topics such
as dereverberation [3, 4] or reverberation parameter estima-
tion [5,6]. The statistical model used in such algorithms needs
to be accurate but should also involve as few parameters as
possible.

Following [7], a time-domain reverberation model was in-
troduced in [8], in which the room impulse response for a
given source and receiver position is given by a single realisa-
tion of a non-stationary stochastic process. The model gives
a two-parameter representation of the impulse response, and
is valid for t greater than the mixing time tm and frequencies
greater than the Schroeder frequency [9] under the assump-
tion that the room is ergodic. We note that the parameters of
the model are normally frequency-band dependent [10]. The
restriction t > tm is relaxed in [11] by dividing the RIR into
two segments with different parameter values.

The research leading to these results has received funding from the EU
7th Framework Programme (FP7/2007-2013) under grant agreement ITN-
GA-2012-316969.

In this paper, we propose an extended model of the RIR
that represents both early and late reverberation components
in multiple frequency bands. Using a representative set of
measured impulse responses, fixed values are derived for the
extra parameters introduced in the extended model.

The paper is organised as follows: in Section 2 the prob-
lem of statistical modelling is defined and details of estimat-
ing its parameters are explained. The relation between the
early and late decay is explored in Section 3, and the final
model is detailed in Section 4. Section 5 presents the valida-
tion of the model’s performance in the likelihood sense, while
Section 6 concludes this paper.

2. PROBLEM STATEMENT

Polack proposed a time-domain statistical model [8] of the
RIR, h(t), excluding the contribution of the direct path:

h(t) =

{
σ b(t)e−

3 log(10)
T60

t t ≥ 0
0 t < 0

, (1)

in which b(t) is zero-mean, unit variance, stationary Gaussian
noise and T60 is the reverberation time. The squared version
of this model for t ≥ 0 is given by

h2(t) = σ2b2(t)e−
6 log(10)
T60

t (2)

with b2(t) following a χ2 distribution with 1 degree of free-
dom or, equivalently, a Gamma distribution b2(t) ∼ Γ( 1

2 , 2).
Converting the model of (2) into discrete time with sample

rate fs, we derive, in each of K third-octave sub-bands, the
following model for the squared impulse response:

h2
k(n) =

(
u(n− 1) γke

log(αk)(n−1) +Nk

)
b2(n) (3)

where Nk is the noise floor of the measured RIR and b2(n) is
the discrete equivalent of the Gamma distributed noise term
discussed earlier. u(n) is the unit step function, αk is the
decay constant in sub-band k, related to T60,k through

log(αk) =
−6 log(10)

fs T60,k
, (4)
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and γk is the drop in energy after the direct path, related to
the frequency-dependent Direct-to-Reverberant Ratio (DRR)
by the equation

DRRk =
1− αk
γk

. (5)

The three parameters of this model, the decay constant
αk, the drop in energy γk and the noise floor Nk, can all be
estimated from a measured room impulse response. To do so,
the RIR is filtered in third-octave sub-bands, then the Hilbert
envelope of each sub-band is computed and squared. The
method presented in [12] is used to fit a decay+noise model
similar to (3) to this squared envelope in the log domain be-
cause this algorithm is robust to noise and gives an unbiased
estimate of T60. The three parameters are directly estimated
by the method using nonlinear optimisation.

We want to incorporate in (3) the behaviour of the early
reflections, modelled in a statistical way. The idea of having
two different frequency-band dependent decay rates for the
early and late part of the impulse response has been explored
in [13, 14] in the context of artificial reverberators. However,
adding extra unknown parameters to estimate in the overall
model would not be practical in many applications linked with
controlling and removing the reverberation. For this partic-
ular reason, the early part of the impulse responses will be
described as a decaying stochastic process as well, and a rela-
tionship will be derived between early and late reverberation
decays. In a similar fashion to αk being linked to T60, the
early decay constant αE,k is related to the Early Decay Time
(EDT) [15].

3. RELATION BETWEEN EARLY AND LATE
DECAY CONSTANTS

In a similar fashion to the statistical model of (3), the be-
haviour of the early reflections is modelled as a realisation
of an exponentially decaying stochastic process. In the re-
mainder of Section 3, the following parameterisation of the
early and late decay constants will be used:

ρ (αk) = log

(
αk

1− αk

)
. (6)

This maps the range 0 < αk < 1 to −∞ < ρ (αk) < ∞.
We will be looking at the relationship between ρ (αk) and
ρ (αE,k) rather than between αk and αE,k directly.

In the remainder of this paper, the set of impulse re-
sponses listed in Table 1 will be used to train and evaluate
our new statistical model. In the table are listed the different
rooms, along with their measured broadband reverberation
time and reference to the database they belong to. No Conf.
refers to the number of different source-receiver configura-
tions, in contrast to No RIRs which refers to the total number

Room T60 (s)
Data-
base

No

Conf.
No

RIRs tm (ms)

A: Lecture 0.780 [16] 6 24 46.8
B: Meeting 0.230 [16] 5 20 36.3
C: Office 0.430 [16] 3 12 33.5
D: Cathedral 3.43 [16] 11 22 -
E: Stairway 0.890 [16] 13 78 -
F: MARDY 0.447 [17] 9 72 35.6
G: SMARD 0.150 [18] 8 24 38.6
V1: MIRD 0.360 [19] 26 26 31.3
V2: MIRD 0.610 [19] 26 26 31.3

Table 1: Table detailing information about RIRs included in the
training (A to G) and validation (V1 -V2) datasets

of room impulse responses included. tm refers to the mixing
time and was computed using the physical predictor described
in the next paragraph. The training set consists of binaural
recordings of RIRs included in the Aachen database [16],
the reflective configuration of the MARDY database [17], as
well as a random subset of the SMARD database [18]. The
RIR database presented in [19] was then used as a validation
set. This database was recorded in a room offering variable
acoustic properties with an omnidirectional loudspeaker. The
two most reverberant conditions and the room impulse re-
sponses recorded at the 4th microphone of the linear array
were used as the validation dataset. All RIRs were recorded
at a sampling frequency fs = 48 kHz.

In order to compute the decay constant of the early part of
a RIR, a boundary must be chosen as to when the density of
reflections becomes sufficient to consider the diffuse reverber-
ation tail has been reached. This boundary, called the mixing
time tm, is investigated in [20] where different physical pre-
dictors of the mixing time are reviewed, compared to more
empirical methods, and perceptual studies are conducted to
verify their validity. Using, when available, the dimensions
of the rooms in the training dataset listed in Table 1, we were
able to predict the values of the mixing time tm.

In [21], diffuseness is assumed when each sound parti-
cle has been through at least four reflections within the room.
This leads to to the physical predictor tm = 47VS ms with
V the room volume in m3 and S the total surface area of the
room in m2. Using this formula, the mixing times given in Ta-
ble 1 are obtained. To confirm these results, we then used the
perceptually motivated formulae presented in [20], giving the
following range for the mixing time values: tm ∈ [25, 32] ms.
As we want to make sure we do not include any portion of the
late decay when fitting αE,k, a lower limit on the possible val-
ues of tm should be chosen. Therefore, we approximate the
boundary between early and late reverberation by choosing it
to be 25 ms in each sub-band and for all rooms in the training
set. The early decay constant αE,k was thus computed using
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the first 25 ms after the direct path of each RIR.
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Fig. 1: Hilbert envelope of an example 1 kHz sub-band RIR with
fitted early decay αE,k and late decay αk (dashed lines).

The values of αk, and therefore ρ (αk), were obtained
from [12] as described in Section 2. To compute αE,k, a
Least-Squares linear fitting was used on a 25 ms window of
the squared Hilbert envelope of each sub-band RIR in the log
domain, starting at the next sample after the direct path.

We now consider the ratio ηk =
ρ(αE,k)
ρ(αk) . After computa-

tion of this ratio in each of the K third-octave sub-bands, for
all RIRs in all rooms, a distribution of its values was obtained
for each sub-band. Figure 2 shows the median as well as the
5%, 25%, 75% and 95% quantiles of these distributions plot-
ted against sub-band centre frequency. A value of ηk smaller
than 1 indicates that the early decay is faster decaying than
the late decay as illustrated in the example of Fig. 1.

Our findings indicate the distribution of ηk is quite narrow
for all frequencies. Accordingly, we use a room-independent
value for ηk equal to the median in the corresponding sub-
band and plotted as the solid curve in Fig. 2. From (6) we
therefore obtain

αE,k =
αηkk

αηkk + (1− αk)ηk
(7)

which will be used to compute αE,k in the remainder of the
paper.

4. SUM OF TWO DECAYS

When observing the behaviour of the energy envelope of a
room impulse response, one can notice there is not a clear sep-
aration between early and late decays. To model this smooth
transition, the model of equation (3) is extended to include a
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Fig. 2: Distribution of the ratio ηk =
ρ(αE,k)

ρ(αk)
across frequencies.

The solid line shows the median value and the dashed lines show the
5%, 25%, 75% and 95% quantiles.

sum of two decays:

h2
k(n) =

[
u(n− 1)

γk
β

(
βelog(αk)(n−1) +

(1− β)elog(αE,k)(n−1)
)

+Nk

]
b2(n) (8)

with β the weight of the late decay term. In the following, we
will differentiate the original model of (3) and the extended
model of (8) using the superscripts (1) and (2) respectively.
Let c(i)k (n) be the deterministic term in each model so that

c
(1)
k (n) = u(n− 1) γke

log(αk)(n−1) +Nk, (9)

c
(2)
k (n) = u(n− 1)

γk
β

(
βelog(αk)(n−1) +

(1− β)elog(αE,k)(n−1)
)

+Nk. (10)

To construct the likelihood of each model, we use

b2(n) ∼ Γ(
1

2
, 2) ⇒ c

(i)
k (n) b2(n) ∼ Γ(

1

2
, 2c

(i)
k (n)) (11)

and assume the realisations of the squared impulse response
to be independent of each other. h̃2

k(n) is used to denote the
actual realisations of the RIR in the sub-band k, with n = 1
corresponding to the sample after the direct path and N the
total length of the impulse response. Using

fΓ(x; κ, θ) =
xκ−1e−

x
θ

θκΓ(κ)
(12)

we have, in each sub-band:

L(i)
k =

N∏
n=1

fΓ

(
h̃2
k(n);

1

2
, 2c

(i)
k (n)

)
. (13)
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Assuming the likelihoods of each model are independent be-
tween sub-bands, we can compute the joint-likelihood

L(i) =

K∏
k=1

N∏
n=1

fΓ

(
h̃2
k(n);

1

2
, 2c

(i)
k (n)

)
. (14)

To determine the optimal value for β, we need to maximise
(14) or, equivalently, minimise its negative logarithm. This is
a one-dimensional constrained optimisation problem that can
be solved using an interior-point algorithm [22]. The con-
straints are 0 ≤ β ≤ 1 and the starting point of the optimisa-
tion method can be chosen to be β = 1 so that the likelihood
is initialised to L(1). The output of the optimisation proce-
dure necessarily results in an improvement over the original
model.
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Fig. 3: Distribution of the β parameter from (8) for each room found
through 1-dimensional maximum likelihood optimisation. The box
indicates the median and inter-quartile range, the whiskers show the
full inlier range and outliers are plotted individually.

This operation is performed for all the impulse responses
from each room. Box and whisker plots of the resulting values
of β are shown in Fig. 3. The distribution of β across all
rooms in the training set is relatively narrow, with a median
value of 0.23 and a mean value of 0.32. In the remainder
of the paper, β will therefore be set to the mean value found
through optimisation β = 0.32.

5. VALIDATION

In order to validate the improved accuracy of the extended
model given in (8) compared to the original model described
in (3), their respective likelihood functions, L(2) and L(1),
were computed for each room impulse response in the train-
ing database. The logarithm of the likelihood ratio was then
computed:

log

(
L(2)

L(1)

)
= log(Λ). (15)

A positive value means that the extended model in (8), which
incorporates early decay modelling, leads to an improvement
in fitting the data in the likelihood sense. In order to be able
to compare the results between the different rooms in the
dataset, the same length N was used when computing the
joint-likelihoods. As the difference between the original and
extended model resides in the earlier part of the RIRs, they
were all truncated to a duration of 520 ms, corresponding to
the length of the shortest recorded room impulse response.
Box and whisker plots of the obtained log likelihood ratios
are plotted Fig. 4 for each room in both training and valida-
tion dataset.
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Fig. 4: Distribution of the logarithm of the likelihood ratio Λ for all
RIRs in each room. A positive value means an improvement com-
pared to the original model.

The lower quartile is positive for all rooms except the
SMARD room, G, which presents a median slightly above
zero. Even though there are, for each room in the training
set, a few cases where the original model fits the data slightly
better, it is seen that the extended model almost always in-
creases the joint-likelihood. Moreover, for all room impulse
responses and both room settings of the validation dataset, the
joint-likelihood of the data is higher using the extended model
described by (8).

6. CONCLUSION

In this paper we have presented a new statistical model of
squared room impulse responses. It extends the well-known
Polack model by incorporating an approximation of the early
reflections’ behaviour. Using an extensive training set of im-
pulse responses, room-independent values were determined
for the additional parameters included in the new model. A
likelihood comparison over the training set and a validation
set showed a substantial improvement in fitting the measured
data.
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