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ABSTRACT

Armed with structures, group sparsity can be exploited to ex-
traordinarily improve the performance of adaptive estimation.
In this paper, a group sparse regularized least-mean-square
(LMS) algorithm is proposed to cope with the identification
problems for multiple/multi-channel systems. In particular,
the coefficients of impulse response function for each system
are assumed to be sparse. Then, the dependencies between
multiple systems are considered, where the coefficients of im-
pulse responses of each system share the same pattern. An
iterative online algorithm is proposed via proximal splitting
method. At the end, simulations are carried out to verify the
superiority of our proposed algorithm to the state-of-the-art
algorithms.

Index Terms— LMS, Multiple system identification,
Group sparsity, Proximal splitting method.

1. INTRODUCTION

System identification has its roots in standard statistical tech-
niques. Many of the basic routines have direct interpretations
as well known statistical methods such as Least Squares and
maximum likelihood. And least mean square (LMS) algo-
rithm is a classical method in adaptive system identification
due to its good performance, easy implementation, and high
robustness [1].

In many scenarios, some prior information of the un-
known systems might be used to improve the accuracy and
efficiency of adaptive estimation algorithms. In this pa-
per, sparsity priori on system coefficients, where the system
response contains a large set of zeros, will be exploited.
Sparsity is actually a very common feature existed in many
system, such as the echo paths [2] and digital TV transmis-
sion channels [3]. And many algorithms have been proposed
recently based on LMS to utilize the prior information of
sparsity, such as ℓ0-LMS [4], ZA-LMS [5], RZA-LMS [6],
OLBI-LMS [7] and so on, where a new term related to spar-
sity priori is usually plugged into the cost function by intro-
ducing ℓ1 norm or ℓ0 norm (indicates the number of non-zero
elements), for instance ZA-LMS and ℓ0-LMS.

This work is funded by National Natural Science Foundation of China
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Besides system sparsity, the correlations behind elements
of sparse vectors exhibit a consistent pattern, i.e. structured
sparsity, which has been proved to promote the accuracy of
the estimation [8, 9, 10]. the correlation between systems is
also a very useful information that can be exploited to im-
prove identification performance, but rarely considered along
with sparsity. Consequently, in this paper, system sparsity and
correlation between the considered systems are both assumed
in multiple / multi-channel systems, as shown in Fig. 1. Par-
ticularly, we can assume that the systems sharing the same
condition and environment will exhibit similar sparsity pat-
tern, i.e. zero or nonzero elements appear in the same loca-
tions, as shown in Fig. 2. This assumption can be verified
in many applications such as multiple echo channel and un-
derwater acoustic channel[11]. And in order to exploit both
sparsity and system correlation, the structured sparsity of the
multiple systems is assumed to identify these systems.

This paper is organized as follows. In section 2, we briefly
describe the multiple system to identify and explain its struc-
tured sparse pattern. In section 3, the group sparse LMS is
proposed to solve the identification problems for multiple /
multi-channel systems. Section 4 provides numerical simu-
lation results and section 5 ends the paper with a conclusion.
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Fig. 1. Adaptive multiple systems.
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2. MULTIPLE SYSTEM IDENTIFICATION

Conventional system identification or LMS filter usually con-
siders only one system. However, in many application we face
multiple systems with strong correlation. As shown in Fig. 1,
at the time step k(k = 1, 2, · · · , t) the input xk produces M
outputs fk,1, fk,2, · · · , fk,M through the designed adaptive
system. The difference ek between the output yk and the de-
sired output fk adjusts the coefficients wk,1,wk,2, · · · ,wk,M

of the filters as feedback.
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Fig. 2. Weight matrix of multiple systems with structured
sparsity.

When the weight vectors are sparse, only few coefficients
are large (black patches in Fig. 2) within the most zero or
negligible small coefficients (blank patches in Fig. 2). We
consider the case that the non-zero coefficients of the multi-
ple systems only appear at the same entry in weight vectors as
shown in Fig. 2. The weight vectors wk,1,wk,2, · · · ,wk,M

are merged into a weight matrix Wk as columns. This pat-
tern of structured sparsity feature in Wk can be induced by
constraining the sum of ℓ1 norm and ℓ2,1 norm of Wk [12].
Denoting w[i, j] the element of the matrix W ∈ RN×M in
the i-th row and the j-th column, the ℓ1 norm and ℓ2,1 norm
of W are expressed as

∥W∥1 =

N∑
i=1

M∑
j=1

|w[i, j]|, ∥W∥2,1 =

N∑
i=1

√√√√ M∑
j=1

|w[i, j]|2. (1)

3. STRUCTURED SPARSE LMS

In this section we firstly derive the final form of the optimiza-
tion problem and then state the algorithm to solve the prob-
lem. We update the weight matrix Wk+1 at time step k + 1
by minimizing the cost function, i.e.

Wk+1 = argmin
W

 δ
k∑

s=1
ls (W) + 1

2 ∥W∥2F
+λ∥W∥1 + µ∥W∥2,1

 , (2)

where ls (W) = 1
2

∥∥WTxs − fs
∥∥2
2

is the loss sum of the
multiple system at time step s, δ > 0 is the learning rate.

The second term is the regularizer (Frobenius norm) and the
last two terms induce W to generate the priori structured
sparsity. For the optimization problem (2), the convex loss
function ls (W) can be approximated by a linear form [13]
gs (Ws)⊙ (W −Ws), with gs (W) its gradient

gs (W) = ∇Wls (W)

= xsx
T
s W − xsf

T
s .

Denoting su(W) the sum of all elements of W, then (2) turns
into

Wk+1 = argmin
W

 δ
k∑

s=1

su(gs (Ws)⊙ (W −Ws))

+ 1
2
∥W∥2F + λ∥W∥1 + µ∥W∥2,1

 ,

(3)
”⊙” denotes the Hadamard product of two matrixes.

By adjusting constant term, optimization problem (2) is
actually equivalent to the following:

Wk+1 = argmin
W

 δ
k∑

s=1

su(gs (Ws)⊙W) + λ∥W∥1
+ 1

2
su(W ⊙W) + µ∥W∥2,1


= argmin

W

(
1
2
su(W ⊙W − 2Zk+1 ⊙W)

+λ∥W∥1 + µ∥W∥2,1

)
= argmin

W

(
1

2
∥W − Zk+1∥2F + λ∥W∥1 + µ∥W∥2,1

)
,

(4)

where Zk+1= −δ
k∑

s=1
gs (Ws) = Zk−δgk (Wk). The opti-

mization problem (4) is a typical convex problem with sin-
gular terms, which can be coupled with proximal splitting
method[14, 15], and each element of matrix Wk+1 can be
estimated as following:

wk+1 [i, j] = sgn (zk+1 [i, j]) · (|zk+1 [i, j]| − λ)+

·

1− µ

/√√√√ M∑
j=1

(|zk+1 [i, j]| − λ)2+


+

,
(5)

where for x ∈ R, (x)+ = max(x, 0). Based on the above,
we propose a group sparse LMS (GS-LMS) algorithm dedi-
cated to identifying the multiple systems with system param-
eters sharing same sparsity pattern. The iterative algorithm
determines an adaptive filter system by minimizing the cost
function (2), or equivalently (4), and the proposed algorithm
can be concluded as Algorithm 1.

To ensure the convergence of the proposed algorithm, the
learning rate δ should satisfy 0 < δ < 1/λmax, where λmax

is the greatest eigenvalue of the input covariance matrix C =
E
(
xkx

T
k

)
. Parameters λ and µ is much related to the ac-

tual problem considered in practice, and they can be tuned
according to [9], or simply fixed empirically (as presented in
the simulation parts).

Note that, when parameter µ = 0, Algorithm 1 will de-
generate to OLBI-LMS [7]. Thus OLBI-LMS is a particular
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Algorithm 1 GS-LMS algorithm
Input:

The input and desired output of multiple system at each
time step xk and fk;

Output:
The weight matrix designed at each time step Wk;

1: Initialize W1 = 0 and Z1 = 0 ;
2: for k = 1, 2, · · · do
3: Zk+1 = Zk + δ

(
xkf

T
k − xkx

T
kWk

)
;

4: Compute Wk+1 by Eq.(5) from Zk+1;
5: end for

case of our proposed GS-LMS algorithm. In the following
section, simulations will be given to demonstrate the superi-
ority of GS-LMS to OLBI-LMS.

4. SIMULATIONS

In this section, numerical simulations are carried out to ana-
lyze the effects of algorithm parameters and then verify effec-
tiveness of the proposed algorithm, GS-LMS.

The simulations configuration is set as follows. The in-
put signal xk is drawn from Gaussian distribution with zero
mean and unit variance. The measurement noise εk is also a
zero-mean white Gaussian process with variance σ2

ε adjusted
to achieve SNR=15dB. The filter length (order) is set to be
n = 500, thus the learning rate δ = 8× 10−4 . The non-zero
coefficients in each column of W∗ are drawn from a Gaussian
distribution with zero mean and unit variance, and their loca-
tions are randomly assigned. The performance is evaluated
using the mean square deviation (MSD) and the recovered
sparse support (SSU), respectively defined as

MSD(k) = E(∥Wk −W∗∥2F ), k = 1, 2, · · · , t

and SSU(k) = ∥Wk∥0, where W∗ is the true filters weight
matrix and k is the iteration number.

4.1. Empirical analysis for algorithm parameters

In the proposed GS-LMS algorithm, it has two un-fixed pa-
rameters, which will be empirically analyzed in this section.

4.1.1. Estimation Accuracy

Firstly, we fix the parameter λ = 0 and then evaluate the ef-
fects of µ to the final performance of the multiple systems
identification, where the filter sparsity is equal to 80 and with
order of 500. The value of µ is varying from 0 to 2, then
the proposed GS-LSM is exploited to identify the simulated
systems, with the observed noisy signals. 100 trials are imple-
mented and averaged to reach the expectation value of MSD,
as shown in Fig. 3a (the circled line). One can easily find that

the steady state MSD is decreasing. At the same time, the re-
covered filter SSU with respect to different µ is also plotted
in Fig. 3b (the circled line). The result reflects that when µ
is greater than 1.4, GS-LMS will identify a filter with same
sparsity support as the original true filter.

On the other hand, the similar simulations related to pa-
rameter λ is carried out, where µ is set to be 0. The results are
shown in Fig. 3(a) and (b) as starred lines. One can find that
the steady state MSD is almost constant when λ ∈ [0.5, 1.8]
and increasing when λ > 1.8. Moreover, the recovered SP
is less than the true filter SSU, i.e. over sparsify the filter co-
efficients. Consequently, we set this parameter as small as
possible to ensure the correct sparsity support identification,
for instance, λ = 0.5.
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Fig. 3. Steady State MSD (a) and recovered filter SSU (b)
with respect to different parameter settings.

4.1.2. Convergence Rate

In this section, the convergence rate related to parameter set-
tings is analyzed. The system filter sparsity is set to 80 with
order of 500, the parameter λ = 0.5, vary µ in {0.6, 1.4, 2},
then one can plot the MSD evolution and SSU evolution with
respect to iteration numbers, as shown in Fig. 4.

Fig. 4(a) presents the evolution of MSD with different val-
ues for µ. Clearly, when µ is small, i.e. µ = 0.6, the GS-LMS
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converges faster than higher values for µ, but the accuracy
(represented by steady state MSD) is lower. On the other
hand, when µ is large, i.e. µ = 2, the GS-LMS converges
slower than lower value for µ = 1.4, but the accuracy cannot
be improved significantly.

Fig. 4(b) gives the evolution of SSU with different val-
ues for µ. We can find that the convergence speed is slowing
down as increasing the value of µ. However, when µ is small,
i.e. µ = 0.6, it gives a good convergence rate for GS-LMS,
but the recovered SSU does not equal to the true filter sparse
support.
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Fig. 4. MSD (a) and recovered filter SSU (b) with respect to
iteration numbers.

As a conclusion, we can empirically set the parameters
µ = 1.4 and λ = 0.5, which leverage the accuracy and con-
vergence speed.

4.2. Convergence rate comparisons

In this section, comparisons are made to OLBI-LMS pro-
posed in [7] and the standard LMS according the convergence
rate. MSD and SSU are both considered. As mentioned be-
fore that OLBI-LMS is actually a special case of GS-LMS,
where µ = 0. Thus, in this simulation, we set λ = 0.5 for
OLBI-LMS according to [7] and parameters for GS-LMS are
set according to the last section. On the other hand, we set the

sparsity level for each system channel as 80, which is differ-
ent from[7] that with a very small sparsity level. Then, 100
trials are carried out and then plot the evolution of MSD and
sparse support number with respect to iterations in Fig. 5.

Fig. 5(a) shows that GS-LMS and the standard LMS have
almost same convergence speed, but GS-LMS is more accu-
rate than the standard LMS. On the other hand, comparing
to OLBI-LMS, the convergence speed of GS-LMS is much
faster. Fig. 5(b) presents the evolution of SSU for different
algorithms. One can clearly find that the proposed GS-LMS
algorithm can correctly and quickly converge to the true spar-
sity support, while the other two algorithms cannot do this
task very well: the standard LMS cannot correctly identify
the filter sparsity support, while OLBI-LMS converges very
slowly.
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Fig. 5. MSD (a) and recovered filter SSU (b) with respect to
iteration numbers.

4.3. Accuracy comparison to state-of-the-art algorithms

In this section, the simulations are carried out to compare the
performance with respect to different sparsity levels. Com-
parisons are made to the state-of-the-art algorithms, such as
ZA-LMS [5], RZA-LMS[6], OLBI-LMS[7]. The configura-
tion of the simulation is as follows: the learning rate is set
to δ = 8 × 10−3, the OLBI-LMS threshold is λ = 0.5, and
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the GS-LMS thresholds are λ = 0.5, µ = 1.4. Then the
simulations are carried out with m = 10 system channels,
each channel is with filter length (order) n = 100, and the
filters weight vectors sparsity for each channel ∥wk,j∥0(j =
1, 2, · · · ,M) varies from 10 to 100, then one can plot the
steady state MSD with respect to the filter sparsity for differ-
ent algorithms, as shown in Fig. 6. From the result, one can
clearly find that the proposed GS-LMS method has superior
performance (i.e. smallest steady state MSD) to other state-
of-the-art algorithms.
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Fig. 6. Comparison to state-of-the-art algorithms with respect
to steady state MSD for different filter sparsity.

5. CONCLUSION

This paper proposed an algorithm, namely, GS-LMS that
dedicated to the multiple system identification problems. In
particular, the sparsity and intra-system correlation are si-
multaneously considered. The simulation results verify that,
when encountering with the multiple system identification
problems, the proposed GS-LMS is superior to the-state-of-
the-art algorithms, with improved accuracy and high con-
vergence speed. Future works will focus on the theoretical
analysis to the proposed GS-LMS and extensions to practical
applications, for instance, echo cancellation.
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