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ABSTRACT

This paper proposes a hierarchical Bayesian model for es-

timating the parameters of asymmetric power distributions

(APDs). These distributions are defined by shape, scale and

asymmetry parameters which make them very flexible for ap-

proximating empirical distributions. A hybrid Markov chain

Monte Carlo method is then studied to sample the unknown

parameters of APDs. The generated samples can be used to

compute the Bayesian estimators of the unknown APD pa-

rameters. Numerical experiments show the good performance

of the proposed estimation method. An application to an im-

age segmentation problem is finally investigated.

Index Terms— Asymmetric power distributions, hierar-

chical Bayesian model, MCMC, Gibbs sampler, Image seg-

mentation.

1. INTRODUCTION

Many image processing applications require to define an ap-

propriate probability distribution for the observed data. These

applications include image classification, image segmenta-

tion, image registration or change detection. A very classical

approach for defining a probability density function (pdf) for

observed data is to fit the empirical histogram of these data by

classical pdfs such as Gaussian, gamma, Laplace or by their

generalized versions. In particular, the symmetric general-

ized Gaussian distribution has received a considerable atten-

tion in the literature because it generalizes classical distribu-

tions such as the Gaussian or Laplace distributions. However,

in some other applications such as econometrics [1, 2] or im-

age processing, asymmetry has been observed in the distribu-

tion of the data. In particular, image processing applications

involving asymmetric distributions include segmentation of

magnetic resonance images (MRI) [3] or texture classification

using wavelet coefficients [4].

This paper studies asymmetric power distributions (APDs)

that have been introduced in [1, 2]. These distributions are

characterized by scale, shape and asymmetry parameters

which make them more flexible than the symmetric distri-

butions for approximating empirical histograms. We are

particularly interested in developing a Bayesian parameter

estimation method for this kind of distributions. More pre-

cisely, all the unknown parameters of APDs are assigned

prior distributions summarizing the known information about

these parameters. A Markov chain Monte Carlo (MCMC)

method is then introduced to sample the resulting posterior

distribution and to compute the Bayesian estimators of the

unknown APD parameters. The performance of the proposed

Bayesian estimation method is evaluated via several simula-

tion results. An application to the segmentation of images

with APDs is finally investigated.

The paper is organized as follows. The asymmetric power

distributions considered in this work are introduced in Sec-

tion 2. Section 3 presents the Bayesian model suggested for

estimating the APD parameters. The Bayesian estimators as-

sociated with this model being difficult to compute in closed-

form, we study in section 4 an MCMC approach that can

be used to sample according to the posterior of the unknown

APD parameters. The performance of this approach is evalu-

ated via simulated results associated with synthetic data. Sec-

tion 5 considers an application of the proposed method for im-

age segmentation. Section 6 gives some concluding remarks

and future work.

2. ASYMMETRIC POWER DISTRIBUTIONS (APDS)

We consider a class of univariate asymmetric power distribu-

tions defined by the following pdf

fAPD(x|θ) =







δ1/λ

γ1/λΓ(1+1/λ)
exp

(

− δ
γαλ |x|

λ
)

, if x ≤ 0

δ1/λ

γ1/λΓ(1+1/λ)
exp

(

− δ
γ(1−α)λ |x|

λ
)

, if x > 0

(1)

where θ = (λ, γ, α)T is a vector containing the APD param-

eters, Γ(.) is the gamma function and δ = 2αλ(1−α)λ

αλ+(1−α)λ
.

The shape of the APD distribution is adjusted by the pa-

rameter λ > 0 controlling the tail decay whereas α ∈ (0, 1)
characterizes the degree of asymmetry and γ > 0 is a scale

parameter. Some related APD definitions that are equivalent

up to an appropriate change of variables can also be found

in [1, 2, 4].

The proposed distribution defined by (1) has two main ad-

vantages (for our purpose) with respect to APDs of [1] or [4]:

the asymmetric parameter is constrained to belong to a finite

length interval (0, 1) and the presence of a scale parameter

makes it more flexible for practical applications.
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3. BAYESIAN PARAMETER ESTIMATION

This section studies a Bayesian method for estimating the pa-

rameters (α, λ, γ) of an APD. The motivation for using this

method is that it is generic and can be applied to many prob-

lems involving APDs. In particular, the image segmentation

problem considered in Section 5 can be handled by a similar

method. Conversely, the maximum likelihood method pro-

posed in [1] cannot be easily applied to the image segmenta-

tion problem which requires to estimate discrete and continu-

ous parameters. The principle of parameter estimation using

Bayesian inference is to define appropriate priors for the un-

known parameters (and possibly hyperparameters) and to es-

timate these parameters using their posterior distribution. The

priors considered in this study are summarized below.

3.1. Prior distributions

According to the APD pdf given in equation (1), the shape pa-

rameter λ is defined on IR+. However, in practical problems,

its range can be reduced to [0, 3] [5]. Thus, one can assign to

λ the uniform prior

p(λ) =
1

3
1I[0,3](λ). (2)

The scale parameter is assigned a Jeffreys prior

p(γ) =
1

γ
1IIR+(γ). (3)

This choice of non-informative prior is very classical for scale

parameters (see [6] for motivations).

The asymmetry parameter α is constrained in the interval

(0, 1). When there is no additional information, it is natural

to choose the following uniform prior for this parameter

p(α) = 1I(0,1)(α). (4)

3.2. Posterior distribution

We assume that the parameters α, λ and γ are a priori in-

dependent. For any sample x = (x1, ..., xn)
T ∈ IRn dis-

tributed according to an APD with unknown parameter vector

θ = (λ, γ, α)T , the posterior distribution of θ can be written

p(θ|x) ∝

(

n
∏

i=1

p(xi|θ)

)

p(λ)p(γ)p(α) (5)

where ∝ means “proportional to”. This posterior is too com-

plex to derive closed-form expressions of the Bayesian esti-

mators of θ. As a consequence, we propose to use an MCMC

method to generate samples asymptotically distributed ac-

cording to (5) and to use the generated samples to build

estimators of the unknown parameters. It is the objective of

the next section.

4. HYBRID GIBBS SAMPLER

The principle of MCMC methods is to construct a Markov

chain whose equilibrium distribution is the target posterior

distribution. In order to do that, the basic Gibbs sampler gen-

erates samples according to the conditional distributions of

the target distribution. When the conditional distribution of

a subvector of the unknown parameter vector cannot be sam-

pled easily, we can generate this subvector according to an

appropriate proposal and accept or reject this generated vec-

tor using the Metropolis acceptance ratio. When Metropolis

moves are used inside a Gibbs sampler, the resulting MCMC

method is referred to as Metropolis-within-Gibbs or hybrid

Gibbs sampler. This strategy can be used to generate sam-

ples distributed according to (5) by sampling according to

the conditional distributions p(λ|x, γ, α), p(γ|x, λ, α) and

p(α|x, λ, γ), which are detailed below.

4.1. Sampling the shape parameter λ

The conditional distribution of the shape parameter λ satisfies

the following relation

p(λ|x, γ, α) ∝ p(x|θ)p(λ) (6)

where p(λ) has been defined in (2). As a consequence

p(λ|x, γ, α) ∝

[

n
∏

i=1

p(xi|θ)

]

p(λ)

∝
δn/λ

γn/λΓn(1 + 1/λ)
1I[0,3](λ)

× exp

[

−
δ||x−||λλ
γαλ

−
δ||x+||λλ
γ(1− α)λ

]

(7)

where x+ and x− contain all the positive and negative sam-

ples xi and ||x||λ is the lλ-norm. Unfortunately, this con-

ditional distribution is not easy to sample directly. Thus, a

random walk Metropolis Hastings (MH) move is used [7].

This move requires to define an appropriate proposal, which

has been chosen as a zero mean Gaussian distribution whose

variance has been adjusted a priori to obtain a suitable aver-

age acceptance ratio r. In practice, a reasonable range of r is

30% to 90% and it is calculated within a sliding window of

30 samples. Note that to make sure the Markov chain is ho-

mogeneous after the burn-in period, this tuning procedure is

only executed in the burn-in period (see [8] for more details).

The classical MH acceptance ratio necessary to ensure

that the generated samples are asymptotically distributed ac-

cording to their conditional distributions is

ρt = min

{

p(λ∗|x, γ, α)

p(λt|x, γ, α)
, 1

}

(8)

where λ∗ is the candidate generated for iteration t+ 1 and λt

is the value of λ at iteration t.
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4.2. Sampling the scale parameter γ

The conditional distribution of the scale parameter γ is

p(γ|x, λ, α) ∝ p(x|θ)p(γ)

∝

[

n
∏

i=1

p(xi|θ)

]

1

γ
1IIR+(γ)

∝
1

γ
n
λ+1

exp

[

−
1

γ

(

δ||x−||λλ
αλ

+
δ||x+||λλ
(1− α)λ

)]

= IG

(

n

λ
,
δ||x−||λλ

αλ
+

δ||x+||λλ
(1− α)λ

)

(9)

where IG(a, b) is the inverse gamma distribution with hyper-

parameters a and b.
Note that this distribution is easy to sample. This easy

generation is mainly due to the form of APD introduced in

(1), which differs from the definition of [2, 4].

4.3. Sampling the asymmetry parameter α

The conditional distribution of the asymmetric parameter α
satisfies the following relation

p(α|x, λ, γ) ∝ p(x|θ)p(α). (10)

Using the definition of p(α) given in (4), the conditional dis-

tribution can be written

p(α|x, λ, γ) ∝

[

n
∏

i=1

p(xi|θ)

]

p(α)

∝
δn/λ

γn/λΓn(1 + 1/λ)
1I(0,1)(α)

× exp

[

−
δ||x−||λλ
γαλ

−
δ||x+||λλ
γ(1− α)λ

]

.(11)

Since this conditional distribution is not easy to sample

directly, we have used an MH acceptance rule based on a

uniform proposal in the interval (0, 1). Again, the simple

form of APD introduced in (1) makes this generation easier

since α ∈ (0, 1) contrary to the APDs defined in [4] where

α ∈ IR+.

4.4. Minimum mean-squared error estimation

The Bayesian estimators of the unknown parameters can be

computed using the samples generated by the proposed hy-

brid Gibbs sampler. More precisely, the generated samples

are averaged after an appropriate burn-in period to compute

the minimum mean-squared error (MMSE) estimators of λ, γ
and α.

4.5. Numerical simulations

Some numerical simulations have been run to evaluate the

proposed estimation method. The first experiment considers

APD variates with parameters (λ, γ, α) that can be generated

following the method proposed in [1], which is slightly mod-

ified to account for the scale parameter.

Fig. 1 shows an histogram of the generated data x1, ..., xn

(blue histogram) corresponding to the parameters α = 0.75,

λ = 1.3 and γ = 10. The distributions of the samples gen-

erated by the proposed estimation algorithm are displayed

in Fig. 2. The corresponding MMSE estimates ± standard

deviation, computed from 50 Monte Carlo runs, are α̂ =
0.748 ± 0.03, λ̂ = 1.297 ± 0.022 and γ̂ = 10.148 ± 0.628.

These results are in good agreement with the true parameter

values and confirm the good properties of the proposed Gibbs

sampler. Finally, Fig. 1 also shows the good fit between the

histogram of the generated data (in blue) and the APD pdf

with the estimated parameters (in red).
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Fig. 1. Histogram of the generated APD random data (blue

bars) and the corresponding estimated APD pdf (red line).

Fig. 2. Estimated marginal pdfs of the APD parameters.

5. APPLICATION TO IMAGE SEGMENTATION

This section shows that the algorithm developed before (to

estimate the APD parameters) can be modified for an image

segmentation application. More precisely, we assume that the

image to be segmented is composed of homogeneous regions

defined by different sets of APD parameters (α, λ, γ). The

first part of this section describes the different steps of the

proposed segmentation algorithm.

5.1. Problem formulation

Assuming the image is made up by K homogeneous regions,

a label vector z ∈ {1, ...,K}n mapping each image pixel into

the set {1, ...,K} is defined. The distribution of the pixel xi
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conditionally on the kth class is supposed to be defined as

xi|zi = k ∼ APD(θk) (12)

where the APD parameter vector θ = (λ, γ, α)T is associ-

ated with the kth class. Assuming the pixels are independent

conditionally to the knowledge of their classes, we obtain the

following prior for the target image

p(x|z, θ) =

K
∏

k=1

nk
∏

i=1

fAPD(xi|zi = k, θk) (13)

where nk is the number of pixels in class #k and θ =
(θT

1 , ..., θ
T
K)T .

The prior of the image labels is supposed to be a Markov ran-

dom field (MRF) to take advantage of the dependencies be-

tween neighbor pixels in the image. The conditional distribu-

tion of zi for an MRF is defined as

p(zi|z−i) = p(zi|zν(i)) (14)

where z−i = (z1, ..., zi−1, zi+1, ..., zi) and ν(i) contains the

neighbors of label zi. The whole set of random variables zi
forms a random field. The Potts Markov field defined by the

neighborhood structure (14) is particularly adapted to label-

based segmentation [9]. Using the Hammersley-Clifford the-

orem [10], the prior of z can be expressed as a Gibbs distri-

bution

p(z) =
1

C(β)
exp[Φβ(z)] (15)

with

Φβ(z) =

n
∑

i=1

∑

i′∈ν(i)

βδ(zi − zi′) (16)

where β is the granularity coefficient, δ(.) is the Kronecker

function and C(β) is the normalizing constant. In this paper

the value of β has been fixed to 1.2 by cross validation.

The image segmentation problem addressed in this paper

consists of estimating the label vector z and the parameter

vectors θk for k = 1, ...,K from the image x. We propose

to study Bayesian estimators of (θ, z) based on the following

posterior distribution

p(z, θ|x) ∝ p(x|z, θ)p(z)p(θ) (17)

with

p(θ) =

K
∏

k=1

p(θk) =

K
∏

k=1

[p(λk)p(γk)p(αk)] . (18)

The posterior (17) is too complex to derive closed form ex-

pressions of the Bayesian estimators of (θ, z). As a conse-

quence, we propose to sample p(z, θ|x) by using a hybrid

Gibbs sampler presented in the next section.

5.2. Hybrid Gibbs sampler

After an appropriate initialization, the proposed hybrid Gibbs

sampler is made of 4 steps

1. Sampling the shape parameter vector λ = (λ1, ..., λK)T

2. Sampling the scale parameters γ = (γ1, ..., γK)T

3. Sampling the asymmetry parameters α = (α1, ..., αK)T

4. Sampling the labels z

The first three sampling steps are very similar to those pre-

sented in Section 4. The only modification appears in the

expression of the conditional distributions which depend on

the different labels. For example, the conditional distribution

of the shape parameter λk can be written

p(λk|xk, zk, αk, γk) ∝ p(xk|zk, θk)p(λk)

with

p(xk|zk, θk) =

nk
∏

i=1

p(xi|zi = k, θk).

The last sampling step is required to define the conditional

distribution of the label vector z. Following [8], the condi-

tional distribution of the labels z can be computed using the

Bayes rule

p(z|x, θ) ∝ p(x|z, θ)p(z). (19)

Considering the dependency between a label and its neigh-

bors, the conditional distribution of the label zi (correspond-

ing to image pixel xi) is given as follows

p(zi = k|z−i,x, θ) ∝ p(xi|zi = k, θ)p(zi = k|zν(i)).

Denoting as πi,k = p(zi = k|z−i, x, θ), the normalized con-

ditional probability of the label zi is

π̃i,k =
πi,k

∑K
k=1 πi,k

. (20)

The label zi can be drawn from the set {1, ...,K} with the re-

spective probabilities {π̃i,1, ..., π̃i,K}. Note finally that a four-

pixel neighborhood structure has been adopted in this paper.

5.3. Experiments

The proposed algorithm has been applied to a synthetic im-

age composed of four areas defined by APDs with different

parameters reported in Table 1. Each area contains 100× 100
pixels yielding an image of 200 × 200 pixels. An example

of a generated image using the considered APD parameters is

displayed in Fig. 3 (a). The corresponding segmentation map

obtained with the proposed algorithm is shown in Fig. 3 (b).

It is clearly in good agreement with the ground truth (the rate

of correct segmentation is equal to 99.7%).

Table 2 provides more quantitative results in term of means

and standard deviations for the estimated APD parameters

computed from 50 Monte Carlo runs with the same param-

eter values. From these results, after comparing the true and
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Area 1 Area 2 Area 3 Area 4

α 0.75 0.35 0.5 0.15

λ 1.5 2 1.7 1.2

γ 10 2 5 15

Table 1. APD parameters of the areas of the synthetic image.

(a) (b)

Fig. 3. Representative example of (a) a synthetic image made

of four areas with different APD parameters (as indicated in

Table 1) and (b) a segmentation result.

the estimated parameter values, one can wonder whether the

estimation is correct and effective, especially for the largest

values of γ. To illustrate this accuracy, Fig. 4 compares the

histograms of the generated data for each area (blue bars) with

the theoretical marginal posterior distributions (in red) and the

estimated marginal posterior distribution (in green). Even if

there are some differences between the estimated and the true

parameter values, the green curves are superimposed with the

red curves showing that the estimated APD parameters pro-

vide a very good data fit.

Area 1 Area 2 Area 3 Area 4

α̂ 0.756±0.003 0.346±0.003 0.498±0.003 0.138±0.002

λ̂ 1.613±0.035 2.128±0.054 1.843±0.043 1.268±0.024

γ̂ 12.580±0.956 2.075±0.089 6.101±0.417 17.254±1.343

Table 2. Estimated APD parameters for each image area.

6. CONCLUSIONS

This contribution proposed a new Bayesian model for esti-

mating the parameters of an asymmetric power distribution.

A Gibbs sampler allowing the parameters of this model to be

generated was also studied. An application to image segmen-

tation was finally investigated. The obtained simulation re-

sults showed the efficiency of the proposed estimation method

approach for both parameter estimation and image segmen-

tation. Future work will be devoted to the analysis of real

images with the proposed Bayesian framework.
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