23rd European Signal Processing Conference (EUSIPCO)

OPERATOR-VALUED KERNEL RECURSIVE LEAST SQUARES ALGORITHM

P. O. Amblard

GIPSAlab/CNRS UMR 5283
Université de Grenoble
Grenoble, France

ABSTRACT

The paper develops recursive least square algorithms for nonlinear
filtering of multivariate or functional data streams. The framework
relies on kernel Hilbert spaces of operators. The results generalize
to this framework the kernel recursive least squares developed in the
scalar case. We particularly propose two possible extensions of the
notion of approximate linear dependence of the regressors, which
in the context of the paper, are operators. The development of the
algorithms are done in infinite-dimensional spaces using matrices of
operators. The algorithms are easily written in finite-dimensional
settings using block matrices, and are illustrated in this context for
the prediction of a bivariate time series.

Index Terms— kernel RLS, operator-valued kernels, vector-
valued RKHS, multitask learning, functional data analysis

1. INTRODUCTION

In this paper we consider the problem of online nonlinear filtering
for functional data. Functional data analysis deals with applications
for which data are naturally modeled as functions [1, 2, 3]. For ex-
ample, this occurs in sensor networks where each sensor measures,
say, the temperature over time, and the goal is to predict the whole
field of temperature over time. Another relevant application could be
hyperspectral images analysis, for which each pixel can be described
as a whole function of the wavelength. In some application, for ex-
ample ocean monitoring, functional data are available in stream. For
example, a buoy in the pacific ocean regularly sends the measures
it has recorded during some period. Assimilation of this functional
data needs to be done online.

In this work we consider filtering using a reproducing kernel
Hilbert space (RKHS) approach. This framework has been proved
extremely powerful for scalar problems [4, 5] since it allows nonlin-
ear processing using linear techniques. However, for multivariate or
functional data, the usual theory of RKHS is not appropriate since
it is dedicated to one dimensional output data. It would be possible
to deal with product of different spaces, but this would not take cor-
rectly into account interactions between variables. This has led to the
development of reproducing kernel Hilbert spaces of operators [6].
Many works have been done in this context and some applications
has been developed, especially in the machine learning and statis-
tics communities ([7, 8, 9, 10] to cite some but a few). Some work
concerning the online processing of functional data using RKHS of
operators are emerging, such as [11, 12].

The contributions of this paper are two operator-valued kernel
recursive least square algorithms, ovkRLS, especially for multivari-
ate and functional data filtering applications. These are developed
for infinite-dimensional data, and obviously particularized for mul-

978-0-9928626-3-3/15/$31.00 ©2015 IEEE

H. Kadri

LIF/CNRS UMR 7279
Aix-Marseille Université
Marseille, France

tivariate data. The algorithms rely on two different definitions of
approximate linear dependence for operators.

Earlier works On-line kernel based learning has attracted a lot of
attention in the the last decade, in both the machine learning and the
signal processing communities. The recent review [13] gives an nice
view of the field, especially for applications in filtering. In parallel
and especially in the machine learning community, many works have
developed the use of operator-valued kernel Hilbert spaces and their
application in multitask learning and functional data analysis. In
this paper, we focus on online learning with operator-valued kernels.
In particular, we extend the seminal work in [14], since our results
recover the usual kRLS when the outputs are scalars.

In the following section, we make precise the context of the pa-
per and recall some necessary materials on operator-valued repro-
ducing kernel Hilbert spaces. Section 3 is the core of the paper. We
present a sparsification procedure which generalizes the approximate
linear dependence procedure of the scalar case. Two possible exten-
sions are proposed which lead to two versions of the algorithm. A
simple illustration is provided in the last section. Finally, a discus-
sion concludes the paper by highlighting remaining problems and
some future developments.

2. NOTATION AND BACKGROUND

We motivate the work by a regression problem in high-dimensional
spaces. Given a data set {z;,y;}/,, we look for an f so that a
good model for the data is y = f(x) + . Here, we suppose that
2 and y belongs to some linear spaces X and) which are not nec-
essarily finite-dimensional (the fact that X" is a linear space could
even be relaxed.) For example, the spaces can be some functional
spaces such as L?(I), I being some interval of the real line. In this
case, the problem is a regression problem for functional data, and
f is then an operator from X to) which has to be inferred from
the learning set {a;, y; 1. Another important example in signal
processing is the problem of prediction of a multivariate time series
zt = f(Zi—1,...,2t—m) + €. Here, if z, € R™*, the application
f is an operator from R™"= to R™= and has to be chosen so as to
minimize the prediction errors.

When) is R or C, a powerful approach to solve these kind of
problems is to look for f into a RKHS. This allows to model f as a
highly nonlinear function while at the same time authorizing its es-
timation using very efficient linear algorithms. This has led to a lot
of works in the last two decades [4]. Extending the framework when
the outptut space) is multidimensional or infinite-dimensional has
generated some work in the last decade [7, 8, 9]. The extension con-
siders a space of operators instead of a functional space, and this
requires to switch from scalar-valued kernels to operator-valued ker-
nels. We now formally recall the different notions we need.

2421

23rd European Signal Processing Conference (EUSIPCO)

If K and K’ are two Hilbert spaces, £(K,K') is the Banach
space of bounded linear operators from K to K. In the case of K =
K',weset LK) = LK, K).

Hilbert spaces with reproducing operator-valued kernels [6].
Consider now a Hilbert space H of bounded (and hence continuous)

operators from X’ to), equipped with an inner product <‘> 4 s
called a RKHS if

0pg: H — R
S 5(®) = g2,

is continuous Vf, g € X x). This a generalization to operators
of the continuity of the evaluation functional for functions, a defin-
ing property of usual RKHS [5]. Application of Riesz representation
theorem then allows to show that there exists an operator-valued ker-
nel K(-,-): X x X = L() such that

Note that K (f,.)g is an operator from X —) and belongs to H.
The preceding defining property can be seen as a reproducing prop-
erty since

K has the following symmetry property

(K(f.0)g|k),y, = (K (b, Yk|K(f.)g), = (K (b, fk]g),,.

Finally, K(f,h), Vf,h € X, has a positiveness property: ¥n € N,
v{flv gi}?:l

Z <K(fl7fj)gl|g]>y

Z (K(fi,)9i| K (fis)g:),,

I3 K593 = 0.

The properties of symmetry and positiveness are the defining prop-
erties of a kernel. We call K an operator-valued kernel on X'. It can
be shown [7, 9] that a kernel determines a unique RKHS. Then most
of the constructions done in the function case can be transposed in
this context. In particular, the representer theorem can be proved as
in [4] to show that for the problem

= arglj;rggZC(%yi,f(fvi)) + A fll#)s

where c is a cost function and €2 a strictly increasing positive penalty,
any minimizer can be written as f(-) = >, K(xi,)zi, 2z € Y, Vi.

3. OPERATOR-VALUED KRLS

The aim here is to learn an operator that links x € X toy € Y
based on a data stream {xz;,y;},7 > 1. We consider an operator-
valued kernel K and its associated RKHS H C L(X,)). After ¢
observations, we look for the member f; of H which solves

t
— 1 i — i 2
fo=arg min 3l = 2wl

Thanks to the representer theorem, the minimizer has the form
>, K(xi,)z, and the program becomes

t 2

z¢ = arg min
zZeyt 1
i=

t
yi = K(xj,2:)2
j=1

y

Working in product spaces (with the usual associated inner product)
with matrices of operators allows to write this as

z = arg min y, — Koz[50.

where K; € £()") is a matrix of operators whose (i, 5)th block is
(K+¢)ij = K(z;, ;). Under some assumptions, a solution to this
program can be obtained (including some regularization if needed).
Two problems occur here when dealing with a stream of data. The
first is how to incorporate a new observation in the learning proce-
dure, and the second is the linear increase in dimensions of the ma-
trix of operators K¢ and of the vector of operators y,. The first prob-
lem is solved by formulating a recursive solution to the optimization
problem. The second can be solved by a sparsification procedure
which keeps the most representative data we have seen up to time ¢.
Equivalently this corresponds to approximating the matrix of opera-
tors K¢ by a lower dimensional matrix. This problem is well know
in kernel based learning approaches for large data sets [4]. Here,
since we face a data stream, a nice solution to solve both problems
is to recursively build a dictionary that correctly represents the data
stream. This idea was proposed in [14] to solve the scalar-valued
kRLS. Having built a dictionary up to time ¢ — 1, the new datum x
is incorporated in the dictionary if it can not be predicted from the
members of the dictionary. This is called approximate linear depen-
dence (ALD). We develop this idea in the operator context. It turns
out that this notion for operator is not as simple as in the scalar case.
We provide two possible views of ALD.

3.1. Online sparsification via ALD

Assume that at time step ¢, after having observed ¢ — 1 samples
{ml}f;i we have collected a dictionary consisting of a subset of
the training samples D;—1 = {Z; };n:’f !, where by construction
{K(Z;,)};n:‘f ! are linear independent feature operators. This ob-
viously requires to define the notion of “linear independence” for
feature operators. We give two possible definitions.

Linearly dependent operators. Following [7], we will say that
{K (x;,-)}: are linearly independent, if any y; €) can be uniquely
written as), K (z;,x:)ci, c; €). Hence, when a new datum x; is
observed, we test if K (x¢, -)y can be written as > K (-, %),
and this for all y. Approximate Linear Dependence proceeds by per-
forming a mean square prediction and by testing if the error is small
ornot. Let a = (a1,...,am,—1) where a; €). The mean square
error of prediction reads

m¢—1 2

> K(&,)a; — Kz,)y (1)
j=1

0t(y) = min

H
= n}%n</1¥ta|a>ymt—1 — 2(Ka,aly)y + (K (z, 2)y|y)y.

Here, K, € L(Y™=1) is a matrix of operators whose (%, j)th block
is (K¢)ij = K(&;, ;). Likewise, K., € L(Y™*1,)) is a row

of operators whose ith block is (K,); = K(x+,Z;). Let at be the
— ——1
operator in £(Y™t=1,)) defined by a; = K., K, . The mini-
~—1=*
mum is then reached at a; (y) = K, K,,y, where * stands for the
adjoint. The ALD test consists in comparing J:(y) to zero (practi-
cally to a user defined threshold). The condition &;(y) > 0,Vy € Y
is obviously tedious to verify. However, since the very meaning of
ALD is to test whether the new datum x; is worth considering in the

2422

23rd European Signal Processing Conference (EUSIPCO)

prediction of y;, it seems natural to use the test with y = ;. Thus,
the new datum is declared ALD if

Se(ye) = (K (ze, x)ye|y)y — (ﬁzta,f(ytﬂyz)y < do,

where dp is a user defined threshold. Note that from these equa-
tions, the scalar-valued ALD condition in [14] can be recovered by
choosing y = 1, and does not depend on y;.

Globally linearly dependent operators. A second choice considers
that the data are dependent if 3¢; € R, 4 > 1 not all zero such that
>, ciK(xi,-) = 0. To implement this, when a new datum x; is
collected, we predict the operator K (¢, -) € £(Y, H) using a linear
combination of the operators K (Z;,),s = 1,...,m—_1 taken from
the current dictionary. To test global linear dependence we compare

me_q 2

E a] 3:]7

to a user prescribed threshold dp. The norm used above is an
operator norm. It can be the usual operator norm ||K(z,)|| =
sup, [| K (z, .)yll=/llylly, or the Hilbert-Schmidt norm if we sup-
pose K(z,-) to be Hilbert-Schmidt. In this case, let e be any
orthonormal system of Y, then || K (z,)35 = 3 1K (z, e |-
Recall that the space S(),H) of Hilbert-Schmidt operators from
Y to H is an Hilbert space when endowed with the inner product

K(Itv')

0 = rmn

op

(H1, Ha) := Zk<Hlek}ngk)y. d; then reads
mg—1 2
0t = m&n Z a; K(Zj,-) — K(x,-)
J=1 HS
me—1 2

SO PR

(25,)er — K(xt, ek

H

LetTr K =3, (Kek‘ek y,Kt 1 the matrix with entries (Kt 1)ij =

Tr K (d:,4;) and k; the vector with entries (lc,g)Z = Tr K (2, %)
Then we get §; = mina Tr K(mt,xt) —2a"k; + a" Ki_1a. The
minimum is attained for a, = K, P 1kt and hence

0 = Tr K (z¢, 2¢) — kt t_llkt

In the case of finite-dimensional spaces, the trace is obviously very
easy to calculate. Note that if)) = R this approach also reduces to
the framework developed in [14].

3.2. Algorithm 1: okRLS

Given data up to time ¢, we look for the operator fi € H such
that fi = argminges > ., || f(%:) — ys||3- The representer the-
orem for operator RKHS implies f:(-) = >, K(zi,-)zt,:, where
z,i € Y. If the ALD sparsification technique is used, recall that
K(zi,-)y = Y120 K(i,-)a; ;(y). We have for any y € Y and
any j < t, thanks to the reproducing property

> (K (wi,25)2|y)y

i

(filz)ly)y =

mi,m;

Z <aj7ﬁK(‘i'ﬁ7 5&0‘) Z a:,azi}y>y

a,B=1

Q

To keep simple notations, set zo, = >, aj,2i. Define A, €
L(Y™, V") to be the matrix of operators whose (4,4) block is

(A¢)ji = aj,i. Note that the block (A;);; = 0 as soon as i > m;.
Then the column (f¢ (1), . . ., fe(x:)) " of V! equals A; K ;. There-
fore, the program and its solution are

—-1 * — *
=K; (A/A:) A Y-

zy = arg nenn ly, — At/.k/th,H;t

This form can be turned into a recursive algorithm. The recursion
however depends on the result of the ALD test. Suppose we have
obtained z:_1, and that the new datum (x¢,y:) is acquired. The
derivation is done as in the scalar case. We just provide here the
resulting recursion equations.

1. K(zy,-)is ALD <= 0.(y:) < do, the dictionary is unchanged,
Dy =Di_1,ms = my_1, fI\{/t = ?th The matrices of operators
A, and P, := (AZ‘A,/)_1 are updated via

A
Ao (%)

P, Py — Pt—la:(I_ atPt—la:)_latPt—h

and the solution z; is updated by

—~-1 * *y—1 T
ze =211+ K, 1 Pi1a;(I —arPi_1ay)” (ye — Koy 2e-1).

2. K(xy,-) is not ALD <= 6;(y;) > do, the dictionary is updated

as Dy = Dy_1 Uxy, me = my—1 + 1, the matrices of operators A,
and P; are updated by (I is the identity operator)

A1 0 Py 0
At:(61 I)andPt:< 61 I)

~-1
The matrix of operators K; can be updated via

_ . -1
Ko (K] K.
Kzt ‘K(wt,mt)
—~_1 1 —~—x%
K. +K,_ K., 2K K, L | -K.\K,z,
—Z,K.K, | Z,

where Z; = (K (x¢,2¢) — fI\{/zth\{/;_llfI\{/;)fl. The vector z; is

updated by the recursion

~_1 —~—x% —
Zt—1 — thletZt (yz - Kactzt—l)
Zy (yt - ’I\{/a;tztfl)

To sum up the algorithm, for each ¢t > 1, first evaluate a; and
0+, and apply item 1 above if ALD is true (§; < do) or item 2 if not.

Zt =

3.3. Algorithm 2: Global okRLS

When the global ALD condition is used, the structure of the algo-
rithm is a little bit altered. For the sake of illustration, we present it
in the finite-dimensional setting for which) = R™v. In this situa-
tion, the matrix K is approximated by K+ ~ (A:®@1In,)K:(A:®
I,,)", where K is the nyt x nyt block matrix whose (s,t)th
block is the n, x n, matrix K(zs,z:), where I, is the n, di-
mensional identity matrix, and ® stands for the Kronecker product.
Likewise, K is the mM¢ny X MMy block matrix with defining blocks
K(Zi,2;). A¢isthet x my (aq, ..., at)T where a; is obtained by

2423

23rd European Signal Processing Conference (EUSIPCO)

the global ALD criterion. When sparsification based on the global
ALD is used, we have

— 2
Y, — (As ®Iny)KtzH

zZ: = argmin‘
z

—~—1

K, [(a]a) Al |@ 1,y

This form is easily turned into a recursive formula, along the lines
developed previously. When the new datum is not ALD, the structure
of the algorithm is the same as in algorithm 1. However, the structure
is a little bit altered when the new datum is ALD. In that case, P; =
(A A:)~! and z; are updated according to

P;_ja;

it P, =P, —qa/ P, .,
1+a2—Pt,1at t t—1 — 4y g1

q;

—~-1

zi=2z1-1+K; 1q, (yt - (atT ®Iny)ﬂfztflzt71) .

If n, = 1 itis easy to verify that algorithm 2 reduces also to the
scalar-valued kRLS [14].

Complexity Analysis. A standard implementation of okRLS and
Global okRLS requires O(njm;) operations when dim) = n, <
oo. Thus, okRLS algorithms significantly alleviate the computa-
tional bottleneck of batch operator-valued least squares, which takes
O(njt*) time. The computational cost of both okRLS algorithms
is dominated by the cost of finding the matrix Z; used to compute

the update of K, ! in the non-ALD case. However, it is important
to note that the cost of evaluating the ALD condition in the Global
okRLS algorithm is much less than that of okRLS. For the former
the total number of iterations is of O(n,m;), whereas for the latter
it is of O(n3m7). While ALD involves the multiplication of block
matrices of size nym; X nym; and nym; X ny, global ALD only
involves computing the trace of the operator outputted by the ker-
nel and the multiplication of simple matrices of size m; X m; and
my X 1.

4. AN ILLUSTRATION

We perform a simple experiment to illustrate the okRLS algorithms.
By no means this small experiment is intended to be a complete val-
idation of the algorithms. The numerical stability of the algorithms
has to be established, especially because the okRLS are intended to
be applied to functional data for which the dimensions will be high.
But this is beyond the scope of the paper.

We apply the algorithms to the nonlinear prediction of a multi-
variate time series. We consider the coupling of Glass-Mackey like
models. The bivariate time series is defined by

2x—
Ty = x¢—1 — 0.4 (ft—l - ﬁ)yt—s +0.3y:—3 + €at
0.8y:—
yt = 0.6y:—1 + Lﬂf +0.4zi_2 + eyt
1+y;~,

where €z ¢ and €, ¢ are i.i.d. zero-mean Gaussian noises of variance
1072, Based on the observation of the time series up to time #, the
aim is to estimate (x++1, Y++1) online using okRLS. The kernel used
here is the simple separable kernel operator K (z,y) = k(x,y)T
where k is a scalar kernel on X’ (we chose the Gaussian kernel in our
simulations) and 7" is a constant operator. A simple choice for 7" is
the identity operator. In this case however, the okRLS corresponds to
the evaluation of scalar-valued kRLS in parallel. Furthermore, this
choice does not allow to use the interactions that may exit between

okRLS, o forxandy Trace of error covariance

0.06
0.2 GokRLS, T=I
0.15 0.04
0.1
0.02 : :
0.05 GokRLS,T=Cov y
okRLS
0! 0
0 500 1000 0 500 1000

t t

Fig. 1. Left: Standard deviation curves for the okRLS for each com-
ponents of the bivariate process. Right: Trace of the covariance of
the error of prediction of the bivariate process for the okRLS and
GokRLS with T" = cov output, and GokRLS with T" = I.

the components of the output (here, correlations between x.41 and
Y++1.) A interesting choice to take these interactions into account is
to make 7" dependent on the output. A simple way of proceeding is to
choose T as the covariance of the output. This is easy to implement
since the covariance can be learnt online.

The dataused are {x; = (2t, Yt)i1=i—4;Y; = (Tit1, Yi+1) }i>s.
We plot in figure 1, left, the standard deviation of the error of pre-
diction z¢41 — Z¢4+1, wWhere 2441 is the estimation by the online al-
gorithm for each component z = = and z = y. The algorithm is
the okRLS with 7" being the covariance of the output as described
above. In the right plot, we depict the trace of the covariance of the
error of prediction for the okRLS and GokRLS with 7" as above, and
for the GokRLS with 7' = I. This last case corresponds to scalar-
valued kRLS in parallel. For both plot we only depict the 1024 first
iterations. The parameters (variance of the Gaussian kernel, thresh-
old of the ALD test) of each algorithm were chosen so that they use
on average m; = 60 regressors in the dictionary after 1024 itera-
tions. The curves are obtained by averaging over 1000 independent
snapshots.

As can be seen, convergence has not completly settled but is
almost reached after 1024 iterations. Note that in the left plot, the
lower bound for the curves are 0.1 which is the standard deviations
of the dynamical noise chosen in the model. The convergence of the
okRLS with the chosen kernel is thus satisfactory. The right plot
allows to quantify the difference between okRLS and GokRLS. The
gain is significant for the okRLS at the expense of a higher compu-
tational complexity. The plot allows also to show the improvement
when considering the covariance operator of the output as 7" instead
of I, as illustrated with the GokRLS for the two cases.

Discussion. The simple example developed previously shows the
importance of coupling the outputs via the choice of the kernel. This
coupling clearly improves prediction over the application of kRLS
in parallel (7' = I). However, this example is very simple and we
are currently developping examples in much higher dimensions for
functional valued signals.

Finally, we have not elucidated relashionships between the two
forms of ALD we have studied, a question of great theoretical and
practical interest. Concerning future works, we intend to develop a
sliding ovkRLS and an ovkLMS, study the convergence of the algo-
rithms, and apply all these algorithms to Granger causality in high
dimensional spaces.

2424

23rd European Signal Processing Conference (EUSIPCO)

5. REFERENCES

[1] J. O. Ramsay and B. W. Silverman, Applied functional data
analysis: Methods and case studies, Springer, 2002.

[2] F. Ferraty and P. Vieu, Nonparametric Functional Data Anal-
ysis, Springer Verlag, 2006.

[3] D. Bosq and D. Blanke, Inference and prediction in large di-
mensions, John Wiley & Sons: Chichester, UK, 2007.

[4] B. Scholkopf and A. J. Smola, Learning with kernels, MIT
Press, Cambridge, Ma, USA, 2002.

[5] L Steinwart and A. Christmann, Support vector machines,
Springer, 2008.

[6] E. Senkene and A. Tempel’man, “Hilbert spaces of operator-
valued functions,” Lithuanian Mathematical Journal, , no. 4,
pp. 665-670, 1973.

[7] C. A. Micchelli and M. Pontil, “On learning vector-valued
functions,” Neural Computation, vol. 17, pp. 177-204, 2005.

[8] H.Lian, “Nonlinear functional models for functional responses
in reproducing kernel Hilbert spaces,” The Canadian Journal
of Statistics, vol. 35, pp. 597-606, 2007.

[9] H. Kadri, E. Duflos, P. Preux, S. Canu, and M. Davy, “Non-
linear functional regression: a functional RKHS approach,” in
YW. Teh and M. Titterington (Eds.), Proceedings of The Thir-
teenth International Conference on Artificial Intelligence and
Statistics (AISTATS), JMLR: W&CP 9, Chia Laguna, Sardinia,
Italy, 2010, pp. 111-125.

[10] N. Lim, F. d’Alché Buc, FE. Auliac, and G. Michailidis,
“Operator-valued kernel-based vector autoregressive models
for network inference,” Machine learning, vol. 99, no. 3, pp.
489-513, 2014.

[11] G. Pillonetto, F. Dinuzzo, and G. De Nicolao, “Bayesian on-
line multitask learning of gaussian processes,” IEEE Trans. on
PAMI, vol. 32, no. 2, pp. 193—205, 2010.

[12] J. Audiffren and H. Kadri, “Online learning with operator-
valued kernels,” in Proceedings of the 23th Symposium on Ar-
tificial Neural Networks (ESANN), 2015.

[13] K. Slavakis, P. Bouboulis, and S. Theodoridis, Academic Press
Library in Signal Processing: Volume 1, Signal Processing
Theory and Machine Learning, chapter ch. 17, Online learning
in reproducing kernel Hilbert spaces, pp. 883-987, Elsevier,
2014.

[14] Yaakov Engel, Shie Mannor, and Ron Meir, “The kernel re-
cursive least squares algorithm,” IEEE Transactions on Signal
Processing, vol. 52, no. 8, pp. 2275-2284, 2004.

2425

