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ABSTRACT

Incipient fault diagnosis has become a key issue for reliabil-

ity and safety of industrial processes. Data-driven methods

are effective for feature extraction and feature analysis us-

ing multivariate statistical techniques. Beside fault detection,

fault estimation is essential for making the appropriate deci-

sion (safe stop or fault accommodation). Therefore, in this pa-

per, we have developed an analytical model of the Kullback-

Leibler Divergence (KLD) for Gamma distributed data to be

used for the fault severity estimation. In the Principal Compo-

nent Analysis (PCA) framework, the proposed model of the

KLD has been analysed and compared to an estimated value

of the KLD using the Monte-Carlo estimator. The results

show that for incipient faults (<10%) in usual noise condi-

tions (SNR>40dB), the analytical model is accurate enough
with a relative error around 10%.

Index Terms— Fault detection, KLD model and estima-

tion, Gamma distributed data, Incipient faults.

1. INTRODUCTION

Increased productivity requirements and stringent perfor-

mance specifications lead to more demanding operating con-

ditions of many modern industrial systems. Such conditions

increase the possibility of system failures. Sensor, actuator or

plant failures may drastically change the system behavior, re-

sulting in degradation or even instability. In order to improve

the efficiency, the reliability can be achieved by fault tolerant

control (FTC) which includes two main approaches : passive

FTC and active FTC [1].

In passive FTC, the robust controller is built to cope with the

healthy mode and also accommodate the faults. However, all

the possible faults scenarios must be known in advance and

the input evaluated, which is very conservative.

Active FTC includes a Fault Detecion and Isolation (FDI)

module and supervisor, which decides to maintain the same

controller with adequate parameters (reconfiguration) or en-

gage a new controller (restructuring) to guarantee a required

level of reliability and safety [1].

FDI has become an attractive topic and has received con-

siderable attention during the past two decades because the

efficacy of the fault management relies on the accuracy of

the fault detection and the fault severity assessment. Indeed

fault detection and fault estimation methods should be robust

to noise and unexpected uncertainties and perturbations. If

an accurate analytical fault model is available, optimization-

based approach can be used to estimate the fault amplitude.

But in most case, a data-driven model is used combined with

statistical related methods.

In this paper, we adopt a data-driven approach using descrip-

tive features within a Statistical Process Control (SPC) usual

technique, the Principle Component Analysis (PCA) [2], [3],

framework combined with multivariate statistical techniques

to develop an efficient fault detection and estimation method.

PCA-based monitoring methods can easily handle high di-

mensional, noisy and highly correlated data generated from

industrial processes, and provide superior performance com-

pared to univariate methods [2]. In addition, these process

monitoring techniques are attractive for industrial practical

processes because they only require a good historical data

set of healthy operation, which are easily obtainable for

computer-controlled industrial processes. PCA-based mon-

itoring methods and their extensions have been successfully

applied in a wide range of applications and industries, such

as in chemical processes, air and water treatment, transport

systems, energy, medical devices, and many others [4].

It has already been shown, that in the PCA framework, the

Kullback-Leibler Divergence (KLD) [5] is conceptually more

straightforward and also more sensitive for the fault detection

of incipient faults [6], [7] than the usual detection indices,

like the Hotelling T 2 and squared prediction error (SPE).

The goal of this work is then to derive from data an analytical

model of the KLD that will be used for incipient fault estima-

tion. We assume in the following that the data are multivariate

gamma distributed. Indeed, this assumption is not too restric-

tive as this distribution encompasses the Gaussian and the

χ2 ones which can be found in many areas as for example

acoustics vibration processing. For this work, we compare the

KLD estimation using Monte Carlo simulation and the KLD

model based on Gamma distribution to show the efficiency of

the proposed model including the noise influence.
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2. DEFINITION

2.1. Notation

Let’s introduce the following notations:

We can set X[N×m] such as X = (x1, ..., xi, ..., xm) is the

original data matrix where xi = [x1i...xNi]
′

is a column vec-

tor ofN measurements taken for the ith variable.
X̄[N×m], for X̄ = (x̄1, ..., x̄i, ..., x̄m) is the centered matrix.

S[m×m] =
1
N
X̄ ′X̄ is the sample data covariance matrix.

P[m×m], such as P = (p1, ..., pl, ...pm) is the loading eigen-
vectors matrix.

T[N×m], where T = (t1, ..., tl, ..., tm) is the scores matrix
given by T = X̄P .
a is the fault amplitude parameter.
v[N×m] is the noise matrix.

The star mark (*) refers to the healthy and noise-free case for

the data samples.

2.2. Signals Model

While considering a random variable u that is Gamma-

distributed with shape α and scale β denoted by:

u ∼ Γ(α, β) (1)

The probability density function using the shape-scale para-

metrization is:

f(u;α, β) =
uα−1e−

u
β

βαΓ(α)
for u > 0 and α, β > 0 (2)

Here Γ(α) is the Gamma function evaluated at α.
Considering v[N×m] assumed to be a white Gaussian noise

with a normal distribution (∼ N (0, σ2
v)), every column of v

is the additive noise of the corresponding signal inX .

In our work, we suppose that the noise model corresponds to

an environmental change between healthy data measurements

and the test measured data. Then, the noise is added only on

the test data and the healthy data are noise free. Moreover, all

the noises components on them signals variables are assumed

to be the same (columns of the matrix v are supposed equal).
This assumption is possible as we consider that them signals

are measured at the same time.

We can then write in case of fault free test data (healthy):

xi = x∗i + vi (3)

As said before, our signal components x∗i follows a Gamma
distribution x∗i ∼ Γ(α∗

i , β
∗

i ). We consider that the noisy

signal will also follow a Gamma distribution. Then xi ∼
Γ(αi, βi). We can calculate αi and βi with respect to α

∗

i ,β
∗

i

and σ2
v by identification of the first and the second moment.

αi =
(α∗

i β
∗

i )
2

α∗

i (β
∗

i )
2 + σ2

v

(4)

βi =
α∗

i (β
∗

i )
2 + σ2

v

α∗

i β
∗

i

(5)

2.3. Incipient Fault Model

Incipient faults are defined as slowly developing faults or

slight unpredictable changes in the system. They are charac-

terized by a small amplitude compared to the useful signal [8].

In a short time window, the incipient fault amplitude is as-

sumed to be a constant a.
Hereafter, we consider a gain fault. Faulty components are

therefore proportional to the reference signal ones.

Let’s assume that the considered fault occurs only on one

descriptive feature (variable) among the m measured ones.

The fault affecting the jth variable xj among the m process

variables can be written as:

fa = a×







x∗1j
...
...

x∗Nj



+




v1j
...
...

vNj







(6)

Where fa is the fault component, a is the fault amplitude pa-
rameter and x∗j is the jth reference signal which will be af-
fected by the fault.

With such signal fault and noise modelling, we propose to

study the Kullback-Leibler divergence for the fault detection.

2.4. Kullback-Leibler Divergence for Detection

The difference between the probability density functions

(PDFs) of healthy and test data can be achieved by the KLD

computation between the two distributions [5].

For discrimination between two continuous probability den-

sity functions (PDFs) f(u) and g(u) of a random variable u,
the Kullback-Leibler Information (KLI) is defined as:

I(f‖g) =

∫
f(u) log

f(u)

g(u)
du. (7)

The KL Divergence (KLD) is then defined as the symmetric

version of the KL Information [5], [9]:

KLD(f, g) = I(f‖g) + I(g‖f). (8)

KLD approximation by Monte Carlo Simulation

For arbitrary distributions f and g, (7) can be numerically ap-
proximated using Monte Carlo (MC) simulation. The Monte

Carlo method expresses (7) as the expectation of log(f/g),
under the PDF f . Using ns i.i.d samples {zi}

ns

1 drawn from

f , it consists in calculating:

KL̂D(f, g) = DMC(f, g) =
1

ns

ns∑

i=1

log
f(zi)

g(zi)
(9)

With such approximation, the estimation error distribution is

normal with variance σ2
MC and zero mean (∼ N (0, σ2

MC))
such as σ2

MC = 1
ns
E([log(f/g)]2). More the set of samples

ns will be larger, smaller will be the Monte Carlo estimation

error.
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3. FAULT DETECTION AND ESTIMATION

PROCEDURE

The general procedure of statistical monitoring is to collect

a large number of healthy data samples used as the reference

data set. All new measured data are then compared to the

healthy ones to check whether an abnormal behavior occurs.

So, once the PCA’s model is established, a reference proba-

bility distribution is estimated for each latent score. Then for

each new set of observations, the associated latent scores are

calculated through the PCA’s model and their probability dis-

tribution are estimated. Then, the KLD is used to measure

the dissimilarities between the probability density functions

of healthy latent scores and measured ones. In a complex

system, where the number of the representative latent scores

is high, its is not practical to apply the KLD for each latent

score. In this case, a multivariate KLD should be applied to

measure the dissimilarities between the latent scores together.

The main steps of this fault detection and estimation proce-

dure are shown in the flow-chart depicted in Fig.1.
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Fig. 1. KLD-based FDI flowchart

3.1. KLD modelling

For Gamma densities f and g such that f ∼ Γ(α1, β1) and
g ∼ Γ(α2, β2) the Kullback-Leibler Divergence between f
and g is given by:

KLD(α1, β1;α2, β2) = (α1 −α2)ψ(α1)− log Γ(α1) (10)

+ log Γ(α2) + α2(log β2 − log β1) + α1
β1 − β2
β2

where ψ(α) is the digamma function.
A simple and light computational expression of the diver-

gence is obtained assuming that the measurements vector

X = [x1, x2, ..., xm] is m variate Gamma distributed. So

principal component scores, which are linear combinations

of the original variables, can be approximated by Gamma

distributed variables with a negligible error [10].

From the assumption of Gamma distribution, it follows that

each of the l principal scores tk, (k = 1, 2, ..., l), has a PDF
which we denote f such that f ∼ Γ(αk, βk). We propose to

compare f against its reference. The reference is denoted f∗

such as f∗ ∼ Γ(α∗

k, β
∗

k).

3.1.1. Computation of the reference PDF parameters α∗

k, β
∗

k

t∗k = X∗

[N×m] × pk[m×1] (11)

where pk is the kth eigenvector of the data matrixX
∗.

pk[m×1] = [p1k p2k ... pik ... pmk]
′ (12)

t∗k = p1kx
∗

1 + p2kx
∗

2 + ...+ pikx
∗

i + ...+ pmkx
∗

m (13)

We have:

x∗i ∼ Γ(α∗

i , β
∗

i )

pikx
∗

i ∼ Γ(α∗

i , pik × β∗

i )

t∗k =

i=m∑

i=1

pikx
∗

i ∼ Γ(α∗

k, β
∗

k)

Here we have a sum of Gamma random variables. We

can approximate the sum by a Gamma distribution Γ(α∗

k, β
∗

k).
The shape α∗

k and the scale β
∗

k are obtained by identification

of the 2 first statistical moments (mean and variance).

α∗

k =
µ2
t∗
k

σ2
t∗
k

β∗

k =
σ2
t∗
k

µt∗
k

(14)

The problem is now to estimate the mean and the variance of

the principle component t∗k:

µt∗
k
= E(

i=m∑

i=1

pikx
∗

i ) =

i=m∑

i=1

E(pikx
∗

i ) =

i=m∑

i=1

pikα
∗

i β
∗

i (15)

σ2
t∗
k
= E((

i=m∑

i=1

pikx
∗

i )− µt∗
k
)2 (16)

Using the covariance properties, we can obtain the expression

of σ2
t∗
k
:

σ2
t∗
k
=

i=m∑

i=1

α∗

i p
2
ik(β

∗

i )
2 + 2

i=m−1∑

i=1

q=m∑

q=i+1

pikpqkSiq (17)

Finally, introducing (15) and (17) into (14) we obtain:

α∗

k =
(
∑i=m

i=1 α∗

i pikβ
∗

i )
2

∑i=m

i=1 α∗

i p
2
ik(β

∗

i )
2 + 2

∑i=m−1
i=1

∑q=m

q=i+1 pikpqkSiq

(18)

β∗

k =

∑i=m

i=1 α∗

i p
2
ik(β

∗

i )
2 + 2

∑i=m−1
i=1

∑q=m

q=i+1 pikpqkSiq
∑i=m

i=1 α∗

i pikβ
∗

i

(19)

Where

α∗

i =
µ2
x∗

i

σ2
x∗

i

=
( 1
N

∑N

r=1 x
∗

ri)
2

1
N

∑N

r=1(x
∗

ri −
1
N

∑N

r=1 x
∗

ri)
2

(20)

β∗

i =
σ2
x∗

i

µx∗

i

=
1
N

∑N

r=1(x
∗

ri −
1
N

∑N

r=1 x
∗

ri)
2

1
N

∑N

r=1 x
∗

ri

(21)

23rd European Signal Processing Conference (EUSIPCO)

2308



3.1.2. Computation of the faulty PDF parameters αk, βk

As mentioned before, the fault affects one variable xj . We

can write:

xj = (x∗j + vj) + a× (x∗j + vj) (22)

where a is the fault amplitude.

Therefore, if the noisy variable (x∗j + vj) ∼ Γ(αj , βj) then
the resulting faulty variable is xj ∼ Γ(αj , (1 + a)× βj)
In the PCA framework the scores can be written as:

tk = p1kx1+p2kx2+...+pjkxj+...+pmkxm ∼ Γ(αk, βk)
(23)

Then, based on the Gamma approximation of a sum of

Gamma random variables, the expression of αk and βk are

given in (24) and (25).

αi =
µ2
xi

σ2
xi

=
( 1
N

∑N

r=1 x
∗

ri)
2

1
N

∑N

r=1(x
∗

ri −
1
N

∑N

r=1 x
∗

ri)
2 + σ2

v

(26)

βi =
σ2
xi

µxi

=
1
N

∑N

r=1(x
∗

ri −
1
N

∑N

r=1 x
∗

ri)
2 + σ2

v

1
N

∑N

r=1 x
∗

ri

(27)

Let’s define:

δy =

i=m∑

i=1

αipikβi δ∗y =

i=m∑

i=1

α∗

i pikβ
∗

i (28)

δw =

i=m∑

i=1

αip
2
ik(βi)

2 δ∗w =

i=m∑

i=1

α∗

i p
2
ik(β

∗

i )
2

θy = αjpjkβj θw = αjp
2
jk(βj)

2

Then the KLD model becomes as (29).

Inverting the KLD model in (29) the theoretical estimation of

the fault amplitude that depends on the divergence value is

finally given by:

â =
θy − 2θw +

√
(2θw − θy)2 − 4(θwδw − ξδy)

2θw
(30)

where

ξ =
β∗

k

e
−

√
2KL̂D

α∗

k

(31)

3.2. Model validation

We consider here a multivariate AR system, in which the gen-

erated signals are approximately Gamma distributed. It is de-

fined at instant h as follows:

c(h) =

(
0.118 −0.191
0.847 0.264

)
c(h− 1) +

(
1 2
3 −4

)
q(h− 1)

(32)

y(h) = c(h) + ρ(h)

where q is the correlated input,

q(h) =

(
0.811 −0.226
0.477 0.415

)
q(h− 1)+

(
0.193 −0.689
−0.32 −0.749

)
d(h− 1) (33)

d is a vector of 2 inputs d = [d1 d2]
′, which are uncor-

related Gamma signals (∼ Γ(0.5, 0.5)). q = [q1 q2]
′ is

the vector of measured inputs, and y = [y1 y2]
′ is the

vector of outputs corrupted by uncorrelated Gamma error

ρ = [ρ1 ρ2]
′ (∼ Γ(0.1, 0.2)). The vector of process vari-

ables will be formed with the measured inputs and outputs of

the process at instant h, i.e [y1(h) y2(h) q1(h) q2(h)].
A data matrix X of N measurements/rows (N=106) is formed
with these variables. In our example, we will consider that the

fault affects only the variable q2. PCA is applied on the data

covariance matrix; 4 principal components are obtained with

variance λ = [40.26 4.9 1.14 0.17]. The first principal
component accounts for 86.6% of variance.

For our study, we consider the first component t∗1 where

the corresponding eigenvalue is the highest one, we obtain

t∗1 = Xp∗1. Then, the probability density of t
∗

1 is estimated

as the reference distribution and the probability density of the

faulty t1 is estimated as the test distribution. Fig.2 displays

the KLD computed on the first principle component t1 ver-

sus the fault amplitude a for different noise levels. As seen
in this figure, the theoretical model fits very well with the

approximated divergence.
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Fig. 2. Comparison ofKLD andKL̂D

Nevertheless, the more the noise power is important,

higher will be the difference between the estimated KLD and

the analytical model.

Fig.3 shows the relative error (ǫKLD) between the an-

alytical model and the estimated KLD for different noises

and number of samples conditions. This relative error can be

denoted ǫKLD = KL̂D−KLD

KL̂D
.
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αk =
((
∑i=j−1

i=1
αipikβi) + αjpjk(1 + a)βj + (

∑i=m

i=j+1
αipikβi))

2

(
∑i=j−1

i=1
αip2ikβ

2
i ) + αjp2jk(1 + a)2(βj)2 + (

∑i=m

i=j+1
αip2ikβ

2
i ) + 2

∑i=m−1

i=1

∑q=m

q=i+1
pikpqkSiq

(24)

βk =
(
∑i=j−1

i=1
αip

2
ikβ

2
i ) + αjp

2
jk(1 + a)2(βj)

2 + (
∑i=m

i=j+1
αip

2
ikβ

2
i ) + 2

∑i=m−1

i=1

∑q=m

q=i+1
pikpqkSiq

(
∑i=j−1

i=1
αipikβi) + αjpjk(1 + a)βj + (

∑i=m

i=j+1
αipikβi)

(25)

KLD = (
δ∗2y

δ∗w
−

(δy + θya)
2

δw + θwa2 + θw2a
)ψ(

δ∗2y

δ∗w
)− log Γ(

δ∗2y

δ∗w
) + log Γ(

(δy + θya)
2

δw + θwa2 + θw2a
) + (29)

(δy + θya)
2

δw + θwa2 + θw2a
(log(

δw + θwa
2 + θw2a

δy + θya
)− log(

δ∗w

δ∗y
)) +

δ∗2y

δ∗w
(

δ∗w(δy + θya)

δ∗y(δw + θwa2 + 2θwa)
− 1)
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Fig. 3. KLD model relative error compared to estimation

Fig.3 is plotted for 3 noise levels (SNR = [20dB, 30dB,
40dB]) and 3 number of samples (N = [105, 106, 107]). We

can draw the following remarks :

• In severe noise conditions, (SNR≤20dB) even with an im-
portant number of samples, the relative error is high for

incipient faults (a < 0.1)

• In usual conditions (SNR≥40dB) the analytical model is
accurate enough for the three number of samples.

4. CONCLUSION

Within the fault diagnosis process, fault estimation is crucial

for making the appropriate decision. This task can be tedious

particularly for incipient fault (small fault amplitude in noisy

environment). For Gamma distributed data, we have devel-

oped in the PCA framework, an analytical model of the KLD

from which the fault amplitude expression is derived. This

model has been validated through a comparison with a nu-

merically estimated KLD for different noise conditions and

for different data size. The results show that for incipient

faults, in usual noise conditions (SNR≥40dB), the model is
accurate with a relative error lower than 10%.
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