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ABSTRACT
Representing data in ways to disentangle and factor out hid-
den dependencies is a critical step in speaker recognition
systems. In this work, we employ deep neural networks
(DNN) as a feature extractor to disentangle and emphasize
the speaker factors from other sources of variability in the
commonly used i-vector features. Denoising autoencoder
based unsupervised pre-training, random dropout fine-tuning,
and Nesterov accelerated gradient based momentum is used
in DNN training. Replacing the i-vectors with the resulting
speaker vectors (s-vectors), we obtain superior results on
NIST SRE corpora on a wide range of operating points using
probabilistic linear discriminant analysis (PLDA) back-end.

Index Terms— speaker verification, denoising autoen-
coder, random dropout

1. INTRODUCTION

With the recent success of deep neural networks on a num-
ber of machine learning tasks including speech recognition,
representation learning has also gained significant attention
of research community [1]. Learning good representations
of data is critical for the performance of the machine learn-
ing algorithms. Representations learned using deep hierar-
chies outperformed hand-crafted features on several tasks in
natural language processing [2–4], and image processing do-
mains [5, 6].

One of the key methods that helps learning deep repre-
sentations is unsupervised pre-training. The main motivation
of unsupervised pre-training is that learning the underlying
structure of the data may also help solving the particular task
at hand. One of the methods for unsupervised learning of
representations is denoising autoencoders [7]. Denoising au-
toencoders learn representations that are robust against cor-
ruptions on the input.

In this paper, we use unsupervised pre-training with de-
noising autoencoders and random dropout fine-tuning [8] to
emphasize the hidden factors related with speaker identity
in the i-vector representation. The new representation called

speaker vectors, or s-vectors in short, eases the speaker de-
tection task, and improves the performance of back-end clas-
sifiers. We experiment with the state-of-the-art PLDA back-
end on NIST SRE corpora. The new s-vector representation
outperformed the i-vector representation on a wide range of
operating points especially in the low-false alarm rate region.

This work is not the first attempt in the literature to
adopt the recent advancements in deep neural networks to
the speaker verification problem. In [9], bottleneck features
are proposed for speaker verification as an alternative to Mel
Frequency Cepstral Coefficients (MFCC). In [10], Gaussian
Bernoulli Restricted Boltzmann Machines (GB-RBM) are
used as a replacement to the PLDA model. Two GB-RBMs
are used to model target and non-target classes. Each GB-
RBM takes the concatenation of two i-vectors to compare as
the input vector. The log-likelihood ratio given by the two
models are used as the final score during the test phase. A
second attempt to replace PLDA using Gaussian RBMs is
presented in [11]. They proposed a topology where the hid-
den layer has separate sub-blocks for the speaker and channel
factors. This method may be used as a generative model to
obtain log-likelihood ratio scores or as a method to reduce the
dimensionality of i-vectors by projecting to speaker factors
space. Unlike the works in [10, 11], we do not attempt to
replace PLDA with a neural network. Instead, we present
a method to transform the i-vectors to a new representation,
which we call s-vector, more suitable for the speaker verifica-
tion task. In [12], Gaussian mixture model, typically used to
generate sufficient statistics necessary for i-vector extraction,
is replaced with a deep neural network (DNN). Our approach,
instead, uses a DNN to expose discriminative information in
i-vectors that can not be utilized by linear models. In this
respect, this work and [12], are complementary to each other.

The rest of the paper is organized as follows. In section
2 we present the denoising autoencoder, and in section 3 ran-
dom dropout method is introduced. In section 4, we describe
how we use these techniques to obtain the s-vector representa-
tion. Experimental results are given in 5, and finally in section
6, we conclude.
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2. DENOISING AUTOENCODERS

Denoising autoencoder [7] is first proposed as a means of
initializing a deep neural network with unsupervised pre-
training. To obtain a good representation to initialize a deep
neural network, deep autoencoders use robustness to corrup-
tion of the input as a training criterion. The denoising auto
encoder first encodes a noisy version of the input, and then
tries to decode the input itself from the learned encoding of
the noisy version. Let us denote the input vector as x, and
the corrupted version of the input as x̃. We first map the cor-
rupted input x̃ to y = h(Wx̃+ b), where h is a non-linearity
function, W denotes the weights, and b is the bias term. We
then decode y using z = h(W ′y + b′). W ′ may optionally
be selected as the transpose of W . We want z as close as
possible to the original input x. For binary or near binary in-
puts, one possible corruption process, which is called partial
destruction, is randomly zeroing out some portion of the data.
For real valued inputs, adding Gaussian noise to the input
may be more appropriate.

Denoising autoencoders aim to obtain representations that
are robust to partial corruption or even destruction of the in-
put. It is argued that robustness may only be possible if the
learned representations capture the underlying hidden factors
generating the data. In [13], using denoising autoencoders
as building blocks with a final back-propagation fine-tuning
step, deep architectures are built obtaining state-of-the art re-
sults on several image classification tasks.

3. RANDOM DROPOUT

Random dropout is a technique used in fine-tuning steps of
the neural network learning process [8]. In random dropout,
we zero out the output of each hidden unit with a probability
of p during each presentation of a training sample. After the
training phase, we use all of the hidden units, but multiply
each of the weights by (1−p) to compensate the extra amount
of weights used during the test phase. Although it seems to
be a simple ad hoc trick, the random drop out technique has a
sound foundation and it is very powerful.

The first motivation to use random dropout is that by ran-
domly dropping some of the hidden nodes for each training
sample presentation, we prevent the hidden nodes to depend
on each other. This makes it possible to use the whole capac-
ity of the network and avoids overfitting. Random dropout
could also be seen as a way of ensemble averaging. At each
presentation of each training sample, we are actually working
on a different network. All the networks sampled from our
original architecture share the weights with each other, which
can be seen as a strong regularization. At the test phase, we
are using all the nodes and this could be seen as a form of
ensemble averaging. So random dropout is a very effective
way of training and using a very large ensemble of neural
networks.

We can also apply the random dropout technique on the
visible units perhaps with a smaller value of p. When ap-
plied to visible units, random dropout is similar to denoising
autoencoders using a destructive noise process.

4. A MORE ROBUST REPRESENTATION THAN
THE I-VECTOR

The i-vector model is an unsupervised method to represent
the total variability space. The i-vector representation is be-
lieved to contain information related to the physical factors
generating the speech utterance such as vocal tract length, mi-
crophone used, or room acoustics [14]. In this work, we try
to find a new representation that suppresses the factors irrel-
evant to speaker verification task, and highlights the speaker
identity related factors. The new representation will be more
robust to variations in the subspaces of total variability space
irrelevant to speaker identity. This may make the speaker de-
tection task easier for the following shallow back-end classi-
fiers.

To obtain such a representation from i-vectors, we start
with denoising autoencoder based unsupervised pre-training.
Since i-vectors are continuous input representations, Gaus-
sian noise is added to the input during model training. Us-
ing the feature detectors learned by the denoising autoencoder
as the initial starting point, we train a multi-layer perceptron
(MLP) with random dropout fine-tuning procedure. During
random dropout fine-tuning, we use the speakers in the train-
ing set as our output classes and employ a soft-max regression
layer for the output. After the training phase of the MLP, we
take the output of the last hidden layer as our final feature for
speaker verification. We call this feature as the speaker vector
representation, or s-vector in short.

5. EXPERIMENTS

5.1. Datasets

For NIST SRE12 [15], NIST provided lists of speech seg-
ments belonging to each of the 1918 SRE12 target speakers.
These training speech segments are from SRE06, SRE08, and
SRE10 corpora. The I4U consortium, one of the participants
of NIST SRE12, divided these training segments into two
speaker verification tasks Dev and Eval. Each task is com-
posed of two lists: Train and Test. The utterances in Dev-
Test and Eval-Test are non-overlapping. The Dev-Train and
Dev-Test utterances are included in Eval-Train. The train-
ing and test utterances in the lists have different Lingustic
Data Consortium labels. For each segment two noisy versions
are generated, one having 6 dB SNR and the other having 15
dB SNR. We use 10 HVAC noise files and crowd noise files
generated by summing several hundreds of utterances from
NIST SRE corpora to generate noisy versions of the dataset.
More detailed information about I4U development lists can
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be found in [16]. We used data in Dev list for training models
in our experiments. The Eval list is used for testing.

5.2. Baseline Systems

We used 39 dimensional MFCC features containing 19 static,
19 delta and 1 delta-energy coefficients. We used an energy
based bi-Gaussian classifier for voice activity detection. We
applied feature warping with a 3s window to MFCC features
after voice activity detection. We trained a 2048 mixture gen-
der independent universal background model (UBM) using
segments from NIST SRE04, SRE05 corpora as well as seg-
ments from the Dev-Train list. Noisy segments were not used
in the UBM training. We used the same utterances for training
gender-dependent i-vector models with the i-vector dimen-
sion set to 600.

For the PLDA baseline, we used linear discriminant anal-
ysis to further reduce the dimension of the i-vectors to 200.
The i-vectors were then centered, whitened and unit nor-
malized. We used these i-vectors to train a two-covariance
PLDA model. In training linear discriminant analysis and
two-covariance model, we also used the noisy versions of
the original utterances. When the target speaker had mul-
tiple training segments, we used the average of the training
i-vectors for training the target speaker model. Znorm score
normalization was used for PLDA baseline system.

5.3. Neural Network System

We used the same utterances used in PLDA training to build
DNN models. We used the utterances in Dev-Test list as val-
idation data for optimization of the parameters and for early
stopping. For the corruption process, we used additive Gaus-
sian noise with zero mean and variance equal to 0.2. We used
mini-batch stochastic gradient descent both for pre-training
and fine-tuning the model. We experimented with various
batch sizes and selected 200 as the optimal size. We chose
a pre-training learning rate of 0.001 and a fine-tuning learn-
ing rate of 0.005. We employed early stopping both for back
propagation and random dropout fine-tuning. For random
dropout fine-tuning, we used 0.5 for the probability of omit-
ting hidden nodes, and 0.2 for omitting the input nodes.

In [17], Sutskever et al. used Nesterov accelerated gra-
dient (NAG) based momentum with stochastic gradient de-
scent to train deep neural networks from random initializa-
tions. We applied NAG based momentum as explained in
[17], and found it very useful especially for deep architec-
tures. We used a maximum of 600 fine-tuning epochs. We
used the Theano library [18] for our neural network imple-
mentation.

We experimented with sigmoid, tanh and rectified linear
activation units for hidden nodes, obtaining the best results
with tanh activation units. Hence, for all the results reported
in this paper, we used tanh activation for the hidden nodes.
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Fig. 1. DET curve for i-vector and s-vector systems on tele-
phone data. For extracting the s-vectors, a neural network
having 2 hidden layers with 1k nodes on each layer is used.

The output layer is a soft-max regression layer with a separate
node for each of the speakers in the training set.

5.4. Results

We used the Eval task lists from I4U in our experiments. Only
clean test data are used. We used equal error rate (EER), min-
imum value of decision cost function of NIST SRE08 evalu-
ation (DCF08), and minimum value of decision cost function
of NIST SRE10 evaluation (DCF10) as our performance met-
rics.

We compared the two representations using a PLDA back-
end. The performance of the two features are analyzed for
various values of the feature dimension after LDA. For the s-
vector case, we experimented with both single and two layer
networks to understand if a deep representation is necessary
for our task. For the single hidden layer case, we tried 400,
600, 1000 and 2000 as the number of hidden nodes. For the
two hidden layers case, we tried three configurations for the
number of hidden nodes; 1000-1000, 1000-600, and 600-600.
The EER and minDCF values are shown in Table 1 for the
telephone test data and in Table 2 for the interview test data.

For the telephone test data, we have achieved between 5
to 11% relative improvement with s-vector representation in
EER and DCF10 metrics for every dimension of the LDA pro-
jected feature vectors. The configuration with 2 hidden layers
each with 1000 nodes seems to have the best overall perfor-
mance. Even with a single layer, the s-vector representation
obtains better performance than the i-vector representation.
The deep hierarchies calculate more abstract representations

23rd European Signal Processing Conference (EUSIPCO)

2144



Table 1. Comparison of the i-vector and s-vector systems for clean telephone data.

Systems Dimension 200 Dimension 300 Dimension 400
DCF08 DCF10 EER DCF08 DCF10 EER DCF08 DCF10 EER

i-vector baseline 0.0517 0.1829 1.5 0.0509 0.1812 1.5 0.0519 0.1884 1.62
s-vector L1-h1000 0.0514 0.1753 1.52 0.0509 0.171 1.47 0.0528 0.1763 1.55
s-vector L1-h2000 0.0492 0.176 1.36 0.0493 0.176 1.39 0.0513 0.1831 1.49
s-vector L1-h600 0.0509 0.1739 1.5 0.0496 0.1745 1.47 0.0506 0.1768 1.52
s-vector L1-h400 0.0538 0.1798 1.65 0.0539 0.1768 1.7 0.0537 0.1791 1.66
s-vector L2-h1k-1k 0.0522 0.1691 1.34 0.0508 0.1711 1.43 0.0503 0.1726 1.44
s-vector L2-h1k-.6k 0.052 0.177 1.46 0.051 0.1747 1.55 0.0502 0.174 1.52
s-vector L2-h.6k-.6k 0.0517 0.1774 1.6 0.0509 0.1742 1.52 0.0497 0.1745 1.57

Table 2. Comparison of the i-vector and s-vector systems for clean interview data.

Systems Dimension 200 Dimension 300 Dimension 400
DCF08 DCF10 EER DCF08 DCF10 EER DCF08 DCF10 EER

i-vector baseline 0.0273 0.1351 0.6 0.023 0.1313 0.5 0.0239 0.1363 0.48
s-vector L1-h1000 0.0283 0.1264 0.69 0.0236 0.1246 0.6 0.0236 0.1283 0.52
s-vector L1-h2000 0.0256 0.1277 0.6 0.0243 0.1258 0.55 0.0239 0.1323 0.51
s-vector L1-h600 0.028 0.1308 0.63 0.0256 0.1273 0.62 0.0253 0.1275 0.6
s-vector L1-h400 0.0299 0.1331 0.7 0.0277 0.1265 0.65 0.0263 0.1293 0.57
s-vector L2-h1k-1k 0.0277 0.1273 0.67 0.0245 0.1222 0.63 0.0254 0.1239 0.55
s-vector L2-h1k-.6k 0.0291 0.1308 0.69 0.0271 0.1255 0.57 0.0268 0.1236 0.59
s-vector L2-h.6k-.6k 0.03 0.1292 0.69 0.0265 0.1292 0.6 0.0251 0.1267 0.61

as we go up on the hierarchy. The input of our neural network
system, which is the i-vector representation, is already an ab-
stract one. This may be the reason for obtaining performance
improvements even with a single layer network. In Figure
1, we give the DET plots for the i-vector baseline and the s-
vector representation obtained using a neural network having
2 hidden layers with 1000 nodes on each layer for the tele-
phone test data. We can see that the s-vector representation
consistently outperforms the i-vector representation in a wide
range of operating points, especially in the very low and high
false alarm rate regions.

For the interview test data, we still obtain relative perfor-
mance improvements in the range 6 to 9.3% for the very low
false alarm region measured by minimum of the DCF10 met-
ric. However, we did not observe similar achievements in the
equal error rate region.

Table 3. Percentage of the within-class energy in total energy
for the i-vector and s-vector representations.

Clean Data Clean & Noisy Data
i-vector 58.76 62.786
s-vector 52.06 53.439

To better understand if we achieved our goal of suppress-
ing factors irrelevant to speaker identity, we computed the
percentage of energy due to within-class variance in the to-
tal energy. We used 600 dimensional s-vectors obtained with
a single hidden layer neural network. For the clean data case,

major sources of intra-speaker variability are channel, mi-
crophone and speaking style differences between sessions of
the same speaker. In Table 3, we see a significant drop in
within-class energy percentage using the s-vector representa-
tion. When we also use noise added data in addition to clean
data, we see a smaller increase in within-class energy percent-
age for the s-vector compared to the i-vector. This indicates
that s-vector is more robust to noise compared to the i-vector.

6. CONCLUSIONS

We proposed a method to obtain more discriminative and
robust features from the i-vector representation. This is
achieved by using a deep neural network to emphasize the
speaker factors and suppress the other factors. We obtained
better performance by using the s-vectors as input to a state-
of-the-art PLDA back-end classifier. The new representation
is also very cheap to compute at the test phase. As a future
work, we plan to jointly train a neural network for tasks like
gender and language recognition besides speaker verification
with the hope of obtaining more robust and disentangled
features.
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