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ABSTRACT

In the last years, the i-vector approach became the state-of-the-
art in speaker recognition systems. As in previous approaches,
i-vector -based systems suffer greatly in presence of additive
noise, especially in low SNR cases. In this paper, we will
describe a statistical framework allowing to estimate a clean
i-vector given the noisy one or to integrate, directly, statistical
knowledges about the noise and clean i-vectors in the scor-
ing phase. The proposed procedure is essentially based on a
method which enables to produce statistical knowledge about
the noise effect in the i-vector domain. The work presented
here is based on the hypothesis that the noise effect is Gaussian
and additive in the i-vector space. To validate our approach,
experiments were carried out on NIST 2008 data (det7). Sig-
nificant improvement was observed compared to the baseline
system and to the “muti-style” backend training technique.

Index Terms— i-vector, additive noise, speaker recogni-
tion

1. INTRODUCTION

Two kinds of noise can mainly affect the speaker verification
performance : convolutive noise and additive noise. In the past
years, the research attention was essentially focused on convo-
lutive noise, in the context of i-vector use. The approaches in
this category assume that the convolutive noise is Gaussian
and additive in the i-vector space. Thus, the statistical knowl-
edge about the convolutive noise are directly accounted for in
the scoring phase, which lead to models such as PLDA [1]
or two-covariance [2]. On the other hand, and despite its im-
portance, additive noise has not received as much attention as
convolutive noise from researchers in the context of i-vector
approach. Dealing with additive noise generally falls into one
of four categories: speech enhancement, feature compensa-
tion, robust modeling or score compensation. We will not dis-
cuss the latter here as it does not deal directly with additive
noise.

At signal level, [3] proved that spectral and wavelet-based
speech enhancement techniques do not perform consistently
when used as a pre-processing block in a standard speaker
recognition system even if the resultant speech quality in-
creases. It was further shown in [4] that these algorithms
might either enhance or degrade the recognition performance
depending on the noise type and the SNR level. The speaker-
related information has been proven to be vulnerable and hard
to handle in this domain due to the natural complexity and
redundancy in the speech signal which led to the development
of other techniques based on different domains.

At feature level, [5] carried out an extensive comparison
of several spectrum estimation methods under additive noise
contamination and found that the best spectrum estimator was

related to the noise type and level. Recent work [6,7], based on
vector Taylor series (VTS) then developed using ”unscented
transforms” [8] tried to model non-linear distortions in the
cepstral domain based on a non-linear noise model in order to
relate clean and noisy cepstral coefficients and help estimate a
”cleaned-up” version of i-vectors. Despite its efficiency, this
model remains very rigid due to its complexity and not eas-
ily extensible. In such a technique, adding a normalization
step or changing the parameters used could involve rewrit-
ing the whole technique. On another level, a set of stochas-
tic techniques originally introduced for robust speech recog-
nition such as RATZ [9], SPLICE [10], SSM [11] and TRA-
JMAP [12] have lately been investigated for speaker recog-
nition [13]. In these techniques, the effect of noise is repre-
sented by additive terms in the mean vectors and covariance
matrices of clean speech GMMs. Although some of these al-
gorithms achieve very good results (SSM and TRAJMAP), a
priori knowledge about the test environment is assumed and
sterio training data is required.

On the model level, prior knowledge about the test envi-
ronment is used in the form of a statistical model of the noise
or a reliable estimate of the noise distribution. The paral-
lel model combination (PMC) was first introduced in speech
recognition technology [14] before being adapted to speaker
recognition [15] by building a noisy model and using it to
decode noisy test segments. The use of PMC inside modern
speaker recognition i-vector systems is complex, as the noise
has to be injected inside all the different models: UBM, i-
vector extractor and scoring models. But in practice, the high
computational expense, mainly in the scoring model, of such
a procedure makes it unfeasible in practice. A robust backend
training method called ”multi-style” [16] was proposed as a
possible solution to account for the noise in the scoring phase.
This method uses a large set of clean an noisy data affected
with different noises and SNR levels to build a generic scoring
model. The model obtained yields good performance in gen-
eral, but is still suboptimal for a particular noise because of its
generalization (the same system is used for all noises). An-
other problem with this approach is that it also assumes (theo-
retically) that test noise is in some way present in the training
data, which is not always true. Finally, the use of deep neu-
ral networks (DNNs) has been investigated for robust speaker
recognition before being successfully applied to speech recog-
nition [17–20]. DNNs have been used either to improve the
speaker model (like the ”d-vectors” model proposed in [21]
and extracted from the last hidden layer of a DNN) or to im-
prove the computation of the i-vectors statistics in noisy con-
ditions [22]. But in spite of the extensive training time needed
to build such models, no significant improvements were ob-
served compared to the previously cited methods.

In [23] we have proposed an i-vector ”denoising” proce-
dure, that we called i-MAP, to deal with additive noise. The
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advantage of the proposed approach is that we can use a reg-
ular clean backend since the resultant i-vectors are assumed
to be noise free. In order to build this system, a number of
assumptions were made over the clean i-vectors and the noise
distribution in the i-vector space. In the work proposed, an es-
timation of the clean i-vector corresponding to a noisy one is
obtained as the maximum a posteriori given the noisy i-vector,
the pdf of noise and the pdf of clean i-vectors (in the i-vector
space). In this paper we will present a more general statisti-
cal framework in which we will estimate the a posteriori pdf
of the clean i-vector (Gaussian with full covariance), given the
noisy i-vector, the pdf of noise and clean i-vectors. In the scor-
ing phase, using the two-covariance method, instead of using
a single estimate of the clean i-vector, we will integrate with
respect to the obtained a posteriori pdf.

2. A POSTERIORI CLEAN I-VECTOR PDF
ESTIMATION

We assume that both clean i-vectors and noise are normally
distributed in the i-vector space. The first hypothesis is justi-
fied by the factor analysis model used to extract the i-vectors
[24] which assumes a normal distribution for the resulting i-
vectors. Regarding the noise, Gaussian distribution modeling
seems to be suitable . Even though, the noise is theoretically
known to be non-additive in the i-vector space, an additive
noise model seems to give encouraging results. It shows an
improvement by up to 60% in the recognition performance
compared to the baseline system and by nearly 30% compared
to the ”multi-style” scoring regime. In addition, the approach
is extensible to a mixture of Gaussians to model the noise in i-
vector space. The robustness of the proposed technique comes
from the fact that it does not use information (pdf) about the
distortion caused by the noise but also information (noise i-
vector pdf) about the target i-vector (clean i-vector pdf).

Formally, given a noisy i-vector w1, let’s define two ran-
dom variables X and Y corresponding respectively to the
clean and noisy i-vectors. We define the noise random vari-
able N by:

N = Y −X (1)

We consider that clean i-vectors X are normally distributed as
described in [24], and assume that noise (N) can also be rep-
resented by a normal distribution in the i-vector space. We can
then define the corresponding probability distribution func-
tions f(X) and f(N) as :

f(X) = N (µX ,ΣX) (2)
f(N) = N (µN ,ΣN ) (3)

whereN (µ,Σ) denotes a normal distribution with mean µ
and full covariance matrix Σ.

Referring to (1), (2) and (3) we can express f(w1|X) for
a given w1 as:

f(w1|X) =
1

(2π)
p
2 |ΣN |

1
2

e−
1
2 (w1−X−µN )tΣ−1

N (w1−X−µN )

(4)
Using the Bayesian rule, we can write f(X/w1) as :

f(X/w1) =
f(w1/X)f(X)

f(w1)
(5)

In [25] it is shown that the product of two normal laws is
proportional to a third normal law (section 5.6). The resulting

constant of proportionality exactly cancels out with the term
f(w1) (of equation 5) ensuring that the result is a valid prob-
ability density function. Hence f(X/w1) is a Gaussian with
mean µw1

and covariance matrix Σw1
:

µw1
= (Σ−1

N + Σ−1
X )−1(Σ−1

N (w1 − µN ) + Σ−1
X µX) (6)

Σw1 = (Σ−1
N + Σ−1

X )−1 (7)

3. ESTIMATION OF F (X) AND F (N)

The clean i-vectors distribution f(X) and the noise distribu-
tion f(N) are the two most important components in this de-
noising procedure. f(X) has the advantage of being noise-
independent, so it could be estimated once and for all over a
large set of clean i-vectors in an off-line step before perform-
ing any compensation.

On the other hand, f(N) makes the system able to adapt to
the noise present in the signal and compensate its effect more
effectively. It is estimated for each different test noise and
it requires the existence of clean i-vectors and the noisy ver-
sions corresponding to the same segments. First, for the clean
part and once the train files are fixed, the corresponding clean
i-vectors (X) are extracted. Then, for a given noisy test seg-
ment, the noise is extracted from the signal (using a VAD and
selecting the low-energy frames) then added to the clean train
audio files. Finally, the corresponding noisy i-vectors (Y ) are
estimated and (1) is used to compute N then f(N).

4. EXTENDED TWO-COVARIANCE SCORING

4.1. Two-covariance scoring

This model is a particular case of the Probabilistic Linear Dis-
criminant Analysis (PLDA) described in [1]. It can be seen as
a scoring method and a convolutive noise compensation tech-
nique. It consists of a simple linear-Gaussian generative model
in which an i-vector w of a speaker s can be decomposed in:

w = ys + ε (8)

where the speaker model ys is a vector of the same dimension-
ality as an i-vector, ε is Gaussian noise and :

P (ys) = N (µ,B) (9)
P (w|ys) = N (ys,W ) (10)

N denotes the normal distribution, µ represents the overall
mean of the training data set, B and W are the between- and
within-speaker covariance matrices defined as :

B =

S∑
s=1

ns
n

(ys − µ)(ys − µ)t

W =
1

n

S∑
s=1

ns∑
i=1

(ws
i − ys)(ws

i − ys)t

where ns is the number of utterances for speaker s, n is the
total number of utterances, wi are the i-vectors of sessions of
speaker s, ys is the mean of all the i-vectors of speaker s and
µ represents the overall mean of the training data set. Under
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assumptions (8, (9 and (10 the two-covariance score can be
expressed as:

score(w1,w2) =

∫
N (w1|y,W )N (w2|y,W )N (y|µ,B)dy∏

i=1,2

∫
N (wi|y,W )N (y|µ,B)dy

(11)
the explicit solution of (11) is given in [2]:

score (w1,w2) = w̃t
1Pw̃2 +

1

2
w̃t

1Qw̃1 +
1

2
w̃t

2Qw̃2 (12)

where :

w̃i = wi − µ

P = W−1
(
2W−1 + B

)−1
W−1

Q = W−1
(
2W−1 + B−1

)−1
W−1

−W−1
(
W−1 + B−1

)−1
W−1

In i-vector -based speaker recognition systems [24], length
normalization was shown to improve the overall perfor-
mance [26]. In our case, it is important to mention that
all the noisy and clean i-vectors used were initially length-
normalized. µ ≈ 0 after conditioning so it is possible to
ignore it. We will do that in the following.

4.2. Two-covariance score with the a posteriori pdf

In this section, we assume that the target i-vector is clean and
the test one is noisy. In section 2 we have shown that the a
posteriori pdf of the clean test i-vector given the noisy one is
Gaussian. We denote this pdf asN (µw1 ,Σw1) (see equations
6 and 7). In equation 12, we will replace w1 byN (µw1 ,Σw1)
The score becomes1:

∫
w

(
wtPw2 +

1

2
wtQw +

1

2
wt

2Qw2

)
N (w|µw1 ,Σw1) dw

=

∫
w

(
wtPw2

)
N (w|µw1 ,Σw1) dw

+

∫
w

(
1

2
wtQw

)
N (w|µw1 ,Σw1) dw

+

∫
w

(
1

2
wt

2Qw2

)
N (w|µw1

,Σw1
) dw

First term:∫
w

(
wtPw2

)
N (w|µw1

,Σw1
) dw

=

(∫
w

wtN (w|µw1 ,Σw1) dw

)
Pw2

=Et
N(µw1

,Σw1) [w]Pw2 = µtw1
Pw2

Third term:∫
w

(
1
2wt

2Qw2

)
N (w|µw1

,Σw1
) dw = 1

2wt
2Qw2

1for simplicity reasons, we assume here that only one of the two i-vectors
to be compared is noisy (w1). The extension to the case of two noisy i-vectors
is trivial.

Second term:

∫
w

(
1

2
wtQw

)
N (w|µw1

,Σw1
) dw

=
1

2

∫
w

wtQw

(2π)
p
2 |Σw1 |

1
2

e−
1
2 (w−µw1)

t
Σ−1

w1
(w−µw1)dw

where p is the i-vector space dimension. Q is symmet-
ric and strictly positive-definite. Defining a new variable z =
Q 1

2 w, the second term can be rewritten :

1

2
|Jz (w)|−1×∫
z

ztz

(2π)
p
2 |Σw1

|
1
2

× e−
1
2 (z−z1)tQ− 1

2 Σ−1
w1
Q− 1

2 (z−z1)dz

where z1 = Q 1
2µw1

and |Jz (w)| is the determinant of
Jacobian z with respect to w and equal to :

∣∣ δz
δw

∣∣ =
∣∣∣Q 1

2

∣∣∣ =

|Q|
1
2 and the term becomes equal to :

1

2
(2π)

− p
2 |Σw1

|−
1
2 |Q|−

1
2

∫
z

ztz× e− 1
2 (z−z1)tΛ(z−z1)dz

=
1

2
|Σw1

|−
1
2 |Q|−

1
2 |Λ|−

1
2

∫
z

ztz×N
(
z|z1,Λ

−1
)
dz

=
1

2

∫
z

ztz×N
(
z|z1,Λ

−1
)
dz

where Λ = Q− 1
2 Σ−1

w1
Q− 1

2

∫
z

ztzN
(
z|z1,Λ

−1
)
dz

=

∫
z

(z− z1)
t
(z− z1)N

(
z|z1,Λ

−1
)
dz

+

∫
z

zt1z1N
(
z|z1,Λ

−1
)
dz

=EN (z|z1,Λ−1)

[
(z− z1)

2
]

+ zt1z1

=Tr
(
Λ−1

)
+ ‖z1‖2

Hence, the second term is equal to :

1

2
|Σw1 |

− 1
2 |Q|−

1
2 |Λ|−

1
2

(
Tr
(
Λ−1

)
+ ‖z1‖2

)
(13)

Simplification:

|Λ|−
1
2 =

∣∣∣Q− 1
2 Σ−1

w1
Q− 1

2

∣∣∣− 1
2

=
∣∣Σ−1

w1
Q−1

∣∣− 1
2 = |Σw1

Q|
1
2

Λ−1 =
(
Q− 1

2 Σ−1
w1
Q− 1

2

)−1

= Q 1
2 Σw1

Q 1
2

thus :
Tr
(
Λ−1

)
= Tr

(
Q 1

2 Σw1
Q 1

2

)
= Tr (Σw1

Q)

and :
‖z1‖2 =

∥∥∥Q 1
2µw1

∥∥∥2

= µtw1
Q 1

2Q 1
2µw1 = µtw1

Qµw1

The final formula of the second term is :

1

2

(
Tr (Σw1Q) + µtw1

Qµw1

)
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Using the three terms, the final score is :

µtw1
Pw2 +

1

2

[
Tr (Σw1Q) + µtw1

Qµw1

]
+

1

2
wt

2Qw2 (14)

where Tr (.) is the trace operator. In our experiments, we have
ignored the term related to the a posteriori covariance Σw1 , the
score used is:

µtw1
Pw2 +

1

2

[
µtw1
Qµw1

]
+

1

2
wt

2Qw2 (15)

where µw1 is given by Equation 6.

5. EXPERIMENTAL PROTOCOL

In this paper, we have presented a general framework to deal
with additive noise in i-vector -based speaker recognition sys-
tems. In [23], we have proposed a method which is a par-
ticular case (theoretically) of what we have presented in this
paper. The experimental results presented here are performed
by assuming Σw1

= 0. In our future work, we will present
experiments taking into account the mean and the covariance
of the a posteriori pdf.

Our experiments operate on 19 Mel-Frequency Cepstral
Coefficients (plus energy) augmented with 19 first (∆) and 11
second (∆∆) derivatives. A mean and variance normalization
(MVN) technique is applied on the MFCC features estimated
using the speech portion of the audio file. The low-energy
frames (corresponding mainly to silence) are removed.
A gender-dependent 512 diagonal component UBM (male
model) and a total variability matrix of low rank 400 are esti-
mated using 15660 utterances corresponding to 1147 speakers
(using NIST SRE 2004, 2005, 2006 and Switchboard data).
The LIA SpkDet package of the LIA RAL/ALIZE [27] toolkit
is used for the estimation of the total variability matrix and
the i-vector extraction. The algorithms used are described
in [28]. Finally a two-covariance-based scoring [2] is ap-
plied. The equal-error rate (EER) over the NIST SRE 2008
male test data on the ”short2/short3” task under the ”det7”
conditions [29] will be used as a reference to monitor the
performance improvement compared to the baseline system in
noisy conditions.

We use noise samples from the free sound repository
FreeSound.org [30] as background noises. The open-source
toolkit FaNT [31] was used to add these noises to the full
waveforms generating new noisy audio files for each noise
/ SNR level. For each noisy condition, 500 train speech
segments having SNR levels greater than 25dB and speech
durations of nearly 2 minutes are used to estimate noise distri-
butions in the i-vector space.

Table 1 and Table 2 show the performance of the baseline
system and the proposed method. In all noisy experiments,
enrollment data are clean while each test segment is affected
by a certain noise on a fixed SNR level. In the ”mixed noises”
condition, test data are divided into 3 equal parts affected re-
spectively by air-cooling, car-driving and crowd noise at a cer-
tain SNR level (indicated by the table column). We can see
in Table 1 that the EER rate increases rapidly when SNR de-
creases. Comparing Table 1 and Table 2, we can see that the
proposed method brings a relative improvement greater than
50%. A very important feature of this method is that when
there is no noise the performance using the proposed approach
does not degrade with respect to the baseline system (see col-
umn ”clean”).

Table 1. Baseline system performances (EER). The Target i-
vectors are assumed to be clean.

Test SNR
Clean 0dB 5dB 10dB

Air-cooling
noise 1.59 26.85 15.21 9.51

Car driving
noise 1.59 25.54 14.54 8.32

Crowd
noise 1.59 24.24 13.94 7.77

Mixed
noises 1.59 25.03 14.83 8.64

Table 2. Proposed system performances (EER). The Target i-
vectors are assumed to be clean.

Test SNR
Clean 0dB 5dB 10dB

Air-cooling
noise 1.59 13.21 7.25 4.85

Car driving
noise 1.59 12.05 6.65 3.78

Crowd
noise 1.59 11.55 5.09 3.05

Mixed
noises 1.59 12.25 6.84 4.32

6. CONCLUSION

In this paper we have described a statistical approach to deal
with additive noise. This approach works in the i-vector space
in which we assumed that clean and noisy i-vectors follow
Gaussian pdf. In contrast to our previous work, the clean i-
vector corresponding to the noisy one is considered to be a
Gaussian pdf (called a posteriori pdf). In the scoring phase
(with two-covariance), the score is estimated by integrating
with respect to the obtained a posteriori pdf. The experimental
results are very encouraging (greater than 50% relative gain).
The calculation of an i-vector is mainly based on the a posteri-
ori probabilities of Guassians given frames. In this work, these
latter probabilities are calculated using a GMM-UBM trained
on clean data frames. An interesting perspective is to adapt
the UBM to the test noise to better estimate the a posteriori
probabilities.
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