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ABSTRACT
This contribution presents a Direction of Arrival (DoA) esti-
mation algorithm based on the complex Watson distribution to
incorporate both phase and level differences of captured micro-
phone array signals. The derived algorithm is reviewed in the
context of the Generalized State Coherence Transform (GSCT)
on the one hand and a kernel density estimation method on the
other hand. A thorough simulative evaluation yields insight
into parameter selection and provides details on the perfor-
mance for both directional and omni-directional microphones.
A comparison to the well known Steered Response Power with
Phase Transform (SRP-PHAT) algorithm and a state of the art
DoA estimator which explicitly accounts for aliasing, shows in
particular the advantages of presented algorithm if inter-sensor
level differences are indicative of the DoA, as with directional
microphones.

Index Terms— Direction of Arrival, sensor array, direc-
tional statistics, complex Watson distribution, directional sen-
sors

1. INTRODUCTION

Acoustic sensor networks are of great importance for many
signal processing applications, such as advanced teleconfer-
encing systems, distributed hearing-aids and monitoring and
surveillance systems. An important signal processing task
to be carried out on such networks is acoustic speaker local-
ization and tracking. Most speaker localization algorithms
employ Time difference of Arrival (TDoA) or DoA estimates,
and the localization performance in reverberant and noisy
environments critically depends on the quality of these esti-
mates. Popular DoA estimation algorithms are the Multiple
Signal Classification (MUSIC) algorithm [1], which relies on
an eigendecomposition of the power spectral density matrix
of the microphone signals, and the SRP-PHAT algorithm [2],
which is the generalization of the Generalized Cross Corre-
lation with Phase Transform (GCC-PHAT) algorithm [3] for
more than two microphones. GCC-PHAT allows a direct com-
putation of the DoA using the delay corresponding to the
maximum of cross correlation function of the sensor signals,
while MUSIC and SRP-PHAT require an evaluation of a model
for each possible candidate direction.
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While these algorithms do not explicitly treat reverber-
ation, a possibility to improve performance in reverberant
environments is to extract the signal components related to the
direct sound propagation path followed by an ordinary TDoA
estimation based on the GCC-PHAT algorithm [4].

A fairly recent approach, which proved effective in rever-
berant environments, is proposed in [5]. It is a special case
of the GSCT [6], and it employs a cosine distance measure
between the observations and anechoic candidate models, i.e.,
the expected observations in an anechoic sound field origi-
nating from a candidate position. With the cosine distance
it accounts for the spatial aliasing problem, which arises for
frequencies, where the sensor distance is higher than half a
wavelength.

The algorithm proposed here is in some sense similar, as
it also accounts for spatial aliasing and uses a nonlinearity.
However, it is derived from a statistical model. It makes use of
the complex Watson distribution to describe the probabilities
of each observation to be generated by one of the anechoic
candidate models. The Watson distribution is a distribution of
complex vectors which are normalized to unit length. It found
early applications in the field of image recognition [7], and
it has appeared in the area of beamforming and Blind Source
Separation (BSS) as an alternative to the complex Gaussian
distribution to model microphone array signals in the Short
Time Fourier Transform (STFT) domain [8–11].

The motivation to model the observations as unit-length
vectors instead of a vector of complex STFT coefficients is
the fact that the length of each STFT coefficient vector is
mainly caused by the source. On the contrary, the differences
between the individual coefficients are related to the level and
phase differences, which are mainly caused by the transmission
path. Further, the distribution naturally accounts for aliasing
due to its invariance with respect to multiplication of vector
components with ej2π .

In this paper we formulate DoA estimation as Maximum
Likelihood (ML) estimation involving the Watson distribution.
This results in a statistically motivated distance measure, which
resembles the beamforming concept. A main improvement is
the fact, that the proposed algorithm explicitly exploits level
differences between microphones, since it does not solely
rely on phase differences. This leads to an improved DoA
estimation, if the level differences are indicative of the DoA,
as is the case with directional microphones. Additionally,
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section 4-5 explains how the proposed method can be viewed
either from a kernel density estimation or GSCT point of view
and therefore unifies the different views.

2. OBSERVATION MODEL

Let us consider a reverberated speech signal s(t) captured by
an array of D microphones:

xd(t) = hd,direct(t) ∗ s(t) + hd,rev(t) ∗ s(t) + nd(t), (1)

where hd,direct(t) covers the impulse response due to the time
delay and microphone directivity of the direct path, hd,rev(t)
covers the reverberation and microphone directivity for the
reflections and nd(t) is a noise term for each sensor d =
1, . . . , D.

This time domain model can be approximated by a multi-
plicative transfer function model in STFT domain:

X(m, k) = Hdirect(k)S(m, k) + Ñ(m, k), (2)

where X(m, k) is the vector of observations in STFT do-
main: X(m, k) = [Xd(m, k)]1≤d≤D, and where Xd(m, k) =
STFT {xd(t)}. Hdirect(k) is the frequency bin dependent
transfer function corresponding to the line-of-sight propa-
gation path, and S(m, k) is the source signal. The vector
Ñ(m, k) comprises both the noise term and the reverbera-
tion, which, in a first approximation, can be assumed to be
uncorrelated to the direct signal component [12].

The varying power due to the speaker is removed by a
unit-norm normalization, which maintains level and phase
differences:

Y(m, k) = X(m, k)/‖X(m, k)‖, (3)

where ‖·‖ =
√
XHX. The observations Y(m, k) are now

vectors on the complex unit hyper-sphere, i.e., YHY = 1.
Please note, that this normalization does not effect the relative
level differences between the channels. The relative level
differences can therefore still be used for the DoA estimation,
especially when the sensors are directive.

In a source localization or DoA estimation, one is inter-
ested in the direct, line-of-sight signal component, imping-
ing on the microphone from the source location. Observa-
tions Y originating from the direct path have similar level and
phase differences as in the anechoic scenario. Thus, we de-
rive the anechoic model vector W(k,p) which aims to model
Hdirect(k) for all possible source locations p relative to the
sensor array center.

The TDoA relative to the sensor array center is given by

τd(p) = (‖p−md‖ − ‖p‖) · c−1, (4)

where c is the speed of sound and md is the location of sensor
d relative to the sensor array center. The anechoic model

attenuation is given by

Ad(p) = α+ (1− α) nT
d (p−md)

‖nd‖ ‖p−md‖
, (5)

where α governs the microphone directivity (i.e. α = 1 for an
omni-directional and α = 0.75 for a sub-cardioid microphone),
and nd is the look-direction of each sensor. This equation can
be replaced by, possibly frequency dependent, measured sensor
directivity patterns. For simplicity reasons, the inverse square
law for sound radiation has not been applied. Nevertheless, it
can easily be incorporated as an additional factor in equation 5.

Finally, the anechoic unit-norm normalized model is com-
posed:

W̃(k,p) =
[
Ad(p)e

−2πjf(k)τd(p)
]
1≤d≤D

, (6)

W(k,p) = W̃(k,p)/
∥∥∥W̃(k,p)

∥∥∥ , (7)

where f(k) is the center frequency of the k-th frequency bin.
In the later, the anechoic model is used to identify observations
which are most likely caused by the line-of-sight propagation.

3. STATISTICAL MODEL

Since both the anechoic model vectors and the observations
are mapped to the complex unit hyper-sphere, a probability
distribution accounting for this fact has to be used.

The complex Watson Probability Density Function (PDF)
is defined on the complex unit hyper-sphere:

p(Y;κ,W) =
1

cW(κ)
eκ|W

HY|2 , (8)

where W is the mode vector, κ is a real-valued concentration
parameter and cW(κ) is a normalization constant [7]. Note
that the value of κ = 0 corresponds to a uniform distribution
on the hyper-sphere.

It becomes apparent, that the distribution is invariant to
multiplication of Y or W with a complex scalar of unit norm
and therefore is not influenced by phase terms introduced by
the source. Furthermore, the probability of Y does not change,
if individual vector components are multiplied with ej2π and,
thus, the distribution naturally accounts for the aliasing prob-
lem. The distance measure |WHY|2 within the distribution
has a plausible form, since it is equivalent to the normalized
response power of a beamformer. It is therefore easier to moti-
vate than the cosine-distance measure based solely on TDoAs
which is used in [5].

Now, the PDF values p(Y(m, k);κ,W(k,p)) can be av-
eraged over all observations and calculated for each possible
source position:

J(p) =
1

MK

M∑
m=1

K∑
k=1

p(Y(m, k);κ,W(k,p)), (9)
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where M and K are the number of time frames and frequency
bins, respectively. Finally, the estimated source position is
chosen by a maximum selection, yielding the ML estimate.

4. RELATION TO KERNEL DENSITY ESTIMATION

A kernel density estimator yields an estimate of a probability
density function p̂k(Ỹ) by summing over M kernel functions,
each centered at an observation Y(m, k) [13]:

p̂k(Ỹ) =

M∑
m=1

1

cW(κ)
eκ|Y

H(m,k)Ỹ|2 , ỸHỸ = 1. (10)

If we now evaluate p̂k(Ỹ) with Ỹ = W(k,p) at all pos-
sible anechoic candidate positions p and average over all fre-
quency bins k, we achieve an estimate of the scaled probabili-
ties of each candidate and result in the score function J(p) of
(9).

5. RELATION TO STATE COHERENCE
TRANSFORM

Nesta and Omologo presented the GSCT as a ML estimator
of the data given all possible state models [6]. They defined
a state to be the parameters encoding the properties of the
acoustic signal propagation. Furthermore, they proposed to
calculate state models depending on time differences only,
whereas we generalized this to include arbitrary attenuations
(level differences).

They then chose the Euclidean norm of the difference
between the observation as predicted by the model and the true
observations as the distance measure. In our case, the complex
Watson distribution incorporates the squared absolute value
of the scalar product of the normalized observation and the
anechoic model. This appears to be a more natural choice,
due to the fact that the response power of the beamformer is
exactly that.

Finally, they proposed to apply the non-linearity g(x) =
1 − tanh(αx/

√
4D) to the distance arguing that this non-

linearity increases the resolution of the GSCT likelihood. Here,
this heuristically chosen non-linearity is replaced by the expo-
nential function due to the complex Watson distribution. Only
the scalar κ remains heuristic instead of an entire function.

6. EXPERIMENTAL EVALUATION

The proposed algorithm is evaluated by simulating a rever-
berant enclosure using the image method [14] with speech
samples taken from the TIMIT database [15]. An isotropic
noise field is generated using an isotropic noise field genera-
tor [16, 17]. Room sizes are randomly sampled between 4 and
5m edge length. The sensor array is randomly placed approxi-
mately in the center of the room. The true source position is
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Fig. 1: Normalized score functions for [5] and the proposed
algorithm with the true DoA in red. Both algorithms suffer
due to the spherical noise and high reverberation and do not
estimate the true source position exactly.

randomly chosen on a circle with radius 1.5m centered around
the randomly rotated sensor array. The DoA estimation statis-
tics given in the following are the average of 1000 simulated
configurations.

In the simulations, instead of calculating models for arbi-
trary source positions p, we evaluate models for all DoAs, with
a resolution of 1◦ in the farfield. We deliberately decided to
compare the algorithms in terms of a one-dimensional search
to allow a simplified comparison, although all three algorithms
are appropriate for three-dimensional search. We therefore
calculated the farfield models, since the distance of the source
to the sensors is assumed to be unknown.

Signal duration 1 s

Sampling rate 16 kHz

Reverberation time T60 400ms

Number of sensors D 6

Radius of circular array 10 cm

Sensor directivity Omni-directional

SNR 10 dB

STFT size and shift 1024 and 256 samples

STFT window function Blackman

Table 1: Standard simulation parameters if not explicitly al-
tered in given plot.

Algorithm [5] and the proposed algorithm allow to easily
incorporate observation selection schemes by only considering
observations for which a given criterion is met. An a posteriori
SNR is calculated by dividing the energy in a given bin by a
noise energy estimate from a noise tracker. Subsequently, local
and global smoothing windows are applied to the a posteriori
SNR values. Finally, voice-activity-detection estimates are ob-
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Fig. 2: Evaluation of optimal design parameter κ with respect
to different SNR and reverberation conditions for the proposed
algorithm.

tained by thresholding the local and global smoothing results.
This method is a stripped down version of the speech-presence-
probability estimator given [18, Section 44.5]. Note that the
SRP-PHAT algorithm does not easily allow an observation
selection.

Figure 1 shows example score functions for [5] and the
proposed score function, where both are normalized to fit into
a common plot.

The concentration parameter of the complex Watson distri-
bution governs the smoothness of the score function. Higher
values result in a peaky kernel, meaning that more focus is put
on observations which are close to the candidate steering vec-
tors, while lower values of κ lead to smoother score functions,
however sacrificing resolution.

We first evaluated whether the parameter can be chosen
independently of the SNR and reverberation conditions. We
therefore keep the noise type fixed and vary κ for different
conditions. The results are presented in Figure 2, where we
chose the median instead of the mean square error as a scalar
DoA estimation error measure motivated by the fact that dras-
tic outliers govern mean square error. It can be observed that
κ = 5 is a good choice fairly independent of the noise and
reverberation conditions. Thus, we chose κ = 5 for all other
simulations. This is also the value that is underlying the score
function depicted in Figure 1. There is a similar parameter
governing the smoothness of the score function in the algo-
rithm by [5]. It is set to α = 1 in all simulations. All further
parameters are listed in Table 1.

We now analyze the impact of different stationary noise
types on the proposed estimator and compare it to the results
obtained by the SRP-PHAT algorithm [2] and the GSCT vari-
ant [5]. Figure 3 shows the cumulative histogram of errors.
As an example of how to read this figure, one can see that
80% of the errors of the proposed algorithm are below 3◦ in
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Fig. 3: DoA estimation performance in spectrally and spatially
white noise (N0), in spectrally pink and spatially white noise
(N1), and in a spectrally white and spatially isotropic noise
field (N2) for the different estimators.

an isotropic noise field.
Using the cumulative histogram is motivated by the fact

that drastic outliers (i.e. 180◦ error) greatly influence the mean
squared error whereas the cumulative histogram allows to
visualize the distribution of errors.

All algorithms achieve the highest performance in spec-
trally pink and spatially white noise conditions (N1). Spatially
white noise affects the algorithms more because higher fre-
quencies carry less speech power and are therefore less reliable
in white noise conditions (N0). A spectrally white and spatially
isotropic noise field is clearly the harshest condition (N2).

We finally evaluate the performance of all three algorithms
for directional microphones. We compare frequency indepen-
dent omni-directional, sub-cardioid and cardioid directivity
patterns.

The blue curves in Figure 4 show the performance of the
proposed algorithm. The different directivities do not influ-
ence the performance much, since the model mode vectors
incorporate the attenuations as indicated in equation (5).

The black and green curves show the performance of [2]
and [5], respectively. Both do not incorporate level differences
as features, leading to degraded performance, in particular for
cardioid microphones.

7. CONCLUSION

In this paper we have proposed a source position or DoA
estimator based on a complex Watson kernel. The estimator
is statistically motivated and, unlike the estimator proposed
in [5], does not rely on heuristically defined non-linearities
and distance measures. This contribution can be seen as a
motivation to use the complex Watson distribution not only in
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Fig. 4: Performance of all algorithms with given sensor direc-
tivity.

the context of BSS but also in DoA estimation. The proposed
estimator allows to incorporate microphone level differences in
addition to time differences. It is capable of dealing with time
frequency selection schemes, which is not directly possible in
well known algorithms such as MUSIC and SRP-PHAT. When
the level differences contain information about the source
direction and the sensor directivities are known, the proposed
algorithm clearly outperforms the alternatives.
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